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In a class of games including some Cournot and Bertrand games, a sequence of 
plays converges to the unique Nash equilibrium if and only if the sequence is 
“consistent with adaptive learning” according to the new definition we propose. 
In the Arrow-Debreu model with gross substitutes, a sequence of prices con- 
verges to the competitive equilibrium if and only if the sequence is consistent with 
adaptive learning by price-setting market makers for the individual goods. Similar 
results are obtained for “sophisticated” learning. All the familiar learning algo- 
rithms generate play that is consistent with adaptive learning. Jotuntrl r?f EUP 
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Equilibrium analysis dominates the study of games of strategy, but 
even many of its foremost exponents are troubled by its assumption that 
players immediately and unerringly identify and play a particular vector 
of equilibrium strategies, that is, by the assumption that the equilibrium is 
common knowledge.’ An alternative (and to some extent complementary) 
approach to analyzing behavior in games focuses on learning. The typical 

* We thank Xinghai Fang for his able research assistance, Andreu Mas Cole11 and Tom 
Sargent for encouraging us to pursue this subject, and Frank Hahn for his correct guess that 
our theory of stability in games with strategic complements could be applied to Walrasian 
equilibrium when demand satisfies the “gross substitutability” condition. 

I For example, see Kreps (1990). 

82 
0899-8256191 $3 .OO 
Copyright 0 1991 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



ADAPTIVE AND SOPHISTICATED LEARNING 83 

analysis of this sort considers the game being played repeatedly and posits 
some specific rules according to which players form expectations regard- 
ing what others’ current choices will be as a function of past plays. As- 
suming that the players attempt to maximize their current payoffs given 
these expectations defines a dynamic process generating a sequence of 
plays, and concern then centers on the behavior of the sequence. Does 
play converge over time? And, if so, does it approach the behavior pre- 
dicted by equilibrium analysis? 

This approach is as venerable as equilibrium analysis itself: Cournot’s 
study of duopoly (1838) introduced both the Nash equilibrium and a par- 
ticular learning process. Yet this sort of analysis is subject to criticisms 
that are perhaps as bothersome as those leveled at equilibrium theorizing. 

Cournot supposed that at each round each firm selects the quantity that 
would maximize its payoff if its competitors continued to produce the 
same quantities as at the preceding round. Now called “best-reply” dy- 
namics, this dynamic process still receives attention as a model of learn- 
ing in games (e.g., Bernheim, 1984; Moulin, 1986). Yet it often seems 
unreasonable to suppose that real firms would behave in the particular 
way Cournot described. This is especially true when best-reply dynamics 
lead to nonconvergent, cycling behavior (as happens for some specifica- 
tions of costs and demand). When there is cycling, an outsider with no 
information about payoffs could eventually predict the behavior of 
Cournot competitors more accurately than the firms in the model do, 
simply by predicting continuation of the historical frequency of choices. 

Brown (1951) suggested a model in which the players themselves follow 
a similar procedure, that is, they choose the strategies that maximize their 
individual payoffs given the prediction that the probability distribution of 
competitor’s play at the next round is the same as the empirical frequency 
distribution of past play. This dynamic model, known as “fictitious play,” 
initially led to encouraging results: Robinson (1951) showed that the em- 
pirical distribution of strategy choices under fictitious play converges to 
an equilibrium distribution for any two-player, finite-strategy, zero-sum 
game. However, Shapley (1964) established that, without the zero-sum 
restriction, fictitious play can lead to cycles of exponentially increasing 
length, so that the empirical frequency distribution does not converge at 
all. Moreover, the empirical probabilities in the cycles are bounded away 
from the equilibrium distribution in Shapley’s example. Ironically, an 
outsider who wants to predict the behavior of players under fictitious play 

* In this example, the outsider could be made into a player whose actions (predictions) do 
not affect the other players’ payoffs and whose own payoff is 1 for a correct prediction and 0 
for an incorrect one. Then, we would have an example of a game in which a player can do 
better, along the paths actually generated, by making Cournot forecasts than by forecasting 
based on past empirical frequencies. 
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in Shapley’s example can hardly do better than to employ Cournot’s 
suggestion of supposing that each round’s choices will be the same as the 
preceding round: In the long run, the fraction of errors made by such an 
outsider would converge to zero.2 

Fictitious play is a variant of what one may call “stationary Bayesian 
learning,” according to which the players analyze past observations as if 
the behavior of their competitors were stationary, assigning as much 
weight to observations from the distant past as to more recent observa- 
tions. Of course, the actual behavior of players during learning is nonsta- 
tionary, so these stationary Bayesian models are misspecified and may 
often place too much weight on distant past behavior. Cournot’s rule, 
which bases its forecasts only on the competitors’ most recent past play, 
lies at the opposite extreme. A sophisticated player would be unlikely to 
adopt either kind of rule. 

Cycling is not the only problem to arise from learning models. Fuden- 
berg and Kreps (1988) have shown that models like stationary Bayesian 
learning applied in the extensive form of the game generate a sequence of 
choices that may converge, but to a strategy combination that is different 
from any perfect equilibrium. As they show, the players in general exten- 
sive form games cannot always learn what strategies their competitors are 
playing, because a strategy is in general a function from information sets 
to actions and it may be difficult to gather reliable information about how 
a competitor would behave at information sets that have occurred only 
rarely. 

Taken together, these results raise serious doubts about the validity of 
Nash equilibrium and its refinements as a general model of the likely 
outcomes of adaptive learning. More fundamentally, they indicate that 
the “rationality” of any particular learning algorithm is situation depen- 
dent: An algorithm that performs well in some situations may work poorly 
in others. Apparently, real biological players tailor rules-of-thumb to their 
environments and experience: They learn how to learn. Thus, any single, 
simple specification of a learning algorithm is unlikely to represent well 
the behavior that actual players would adopt. 

A further troubling aspect of existing models of learning in games is that 
they all force the players to be “unsophisticated,” that is, the players can 
use only information about past play, without giving any weight to infor- 
mation about their competitors’ information, payoffs, and rationality. The 
competing approaches of rationahzability (Bernheim, 1984; Pearce, 1984) 
and Nash or correlated (Aumann, 1987) equilibrium lie at the opposite 
extreme: they allow weight to be placed only on payoff information. Real 
players often make use of both kinds of information. 

We provide a general formulation that allows players to combine what- 
ever they may know about the past history of play with whatever they 
may know about their competitors’ information, alternatives, payoffs, 
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and rationality to form a forecast of future play. Our approach is flexible 
enough to encompass bounded rationality of the kind implicit in best- 
reply dynamics and stationary Bayesian learning, but it also applies when 
players are more sophisticated. It encompasses processes in which the 
players can identify cyclical patterns in past play and others in which 
players learn about which of several forecasting models work best. In the 
latter case, the players might track and compare the performance of nu- 
merous alternative forecasting models over time, using past performance 
to select among them or even to form some weighted-average consensus 
forecast to guide their strategy choices at the current stage. Intelligent 
people employ a variety of learning strategies, and in constructing our 
general theory we have strived to encompass them all. 

To achieve the desired degree of generality, we avoid any detailed 
description of how the players actually reach their decisions. Instead, we 
focus on the sequence of plays over time. For an individual player IZ, such 
a sequence is denoted by {x&)}, where for each t in the (discrete or 
continuous) index set, x,(t) is a pure strategy. We then identify two 
properties which these sequences might satisfy-one property each for 
“adaptive” and “sophisticated” learning. One or the other of these prop- 
erties is satisfied under all of the various more specific models of learning. 
We take these as defining when the observed sequence is consistent with 
learning. 

Roughly, bn(t)) is “consistent with adaptive learning” if player n euen- 
tually chooses only strategies that are nearfy best-replies to some proba- 
bility distribution over his competitors’ joint strategies, where near zero 
probability is assigned to strategies that have not been played for a sufJ;- 
ciently long time. Similarly, {xJt)} is “consistent with sophisticated 
learning” if the player eventually chooses only nearly best-replies to his 
probabilistic forecast of competitors’ choices, where the support of the 
probability distribution may include not only past plays but also strategies 
that the competitors might choose if they themselves are adaptive or 
sophisticated learners. Thus, any process {xn(t)} that is consistent with 
adaptive learning is also consistent with sophisticated learning. Sophisti- 
cated learning models allow the player to make full use of any information 
gleaned from past play, but they also allow the player to assimilate fully 
the same kind of payoff information that is used in equilibrium analyses. 
Sophisticated learning is differentiated from equilibrium analysis because 
no fulfilled expectations assumption is imposed. 

The analysis is set in a class of finite-player games with compact strat- 
egy sets and continuous payoffs. The results we report are of three types. 
First are results about what is included in the class of processes consistent 
with adaptive learning. For example, we prove that if a sequence of 
strategy profiles {x,(t)} converges to a (Nash or correlated) equilibrium, 
then each player’s play is consistent with adaptive learning. Thus, one 
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cannot obtain positive equilibrium convergence results with a broader 
class of learning models than the ones that we analyze. We also present a 
theorem about a class of algorithms that includes all the specific ones 
described above, showing that these always generate play that is consis- 
tent with adaptive learning. Second, we report results about the implica- 
tions of adaptive and sophisticated learning: Given any process consistent 
with adaptive learning, play tends toward the serially undominated set, 
namely, the set of strategies that remain after iterated elimination of each 
player’s strongly dominated strategies.3 In particular, for games that have 
but one serially undominated strategy profile, every process consistent 
with adaptive learning converges to the unique serially undominated pro- 
file. Third, we report results that we and others have obtained elsewhere 
about the many examples in economics in which the serially undominated 
set is a singleton and for which our results on the convergence of learning 
processes are especially germane. 

In Section 1 below, we state the definitions and prove the theorems 
described above, which were developed with deterministic learning 
models in mind. In Section 2, we study a stochastic learning model in 
which the players experiment and show how to include it in our general 
framework, so that play eventually converges in an appropriate probabi- 
listic sense toward the serially undominated set. Some important eco- 
nomic applications are developed in Section 3. 

1. FORMULATIONANDMAIN THEOREMS 

We begin with a noncooperative game I = (N, (S, ; n E N), 7~), where N 
is the finite player set, S, is player n’s strategy set with typical element x,, 
and 7~ is the payoff function. We assume that each S, is a compact subset 
of some normed space. Let S = xEEN S,. A typical element of x E S is 
often usefully written as x = (x, , x -,), where x -,, designates the strategy 
choices of everyone besides player n. The payoff function rr: S + RN 
specifies a payoff ~T,(x,, X-J for each player n; we assume it to be 
continuous. Given a set T, let A(T) denote the set of probability distribu- 
tions over T; for example, A(S,) denotes the set of probability distribu- 
tions on S, (mixed strategies). Also, let A-,&J = Xj+,, A(q) denote the 
mixed strategies of n’s competitors. In the usual way, we may identify 
any pure strategy with the mixed strategy that assigns it probability one, 
and we may correspondingly extend the domain of 7~ to include the mixed 
strategies. 

3 For two-player finite games, the serially undominated strategies are the same as the 
rationalizable strategies of Bemheim (1984) and Pearce (1984). When there are more than 
two players, the serially undominated set is, in general, larger than the rationalizable set. 
GUI (1990) has independently developed a theory similar to ours that emphasizes the rationa- 
lizable strategies. 
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A strategy x, E S, is &-dominated by another strategy X, E A@,) if for 
all Z-,, E S-,, rTT,(x,, Z-J + E < r,,(X,, z-,). Being E-dominated is more 
than being strongly dominated; it requires that x, would still be strongly 
dominated even if E were added to all the payoffs that could result from its 
being played. 

Given any set T c S, let T,, denote the projection of T onto S,. Let 
T-, = Xj+n Tj. Much of our analysis centers on the following operator: 

DEFINITION. Given T c S, let 

U;(T) = {x,, E S, 1 WY,, E W,))(~Z-, E T-n) TAX,, z-,) 

+ E 2 7TAYr2, Z-n)) 

U”(T) = x,E,v U;(T). 

The letter U is mnemonic for undominated. The set U:(T) is the set of 
pure strategies in S, that are not E-dominated when each other player m is 
limited to strategies in T,,, . If a player n believes that each other player m 
will choose strategies in T,, then it would be “unjustified” or “irra- 
tional” for n to play any strategy not in U”,(T), for every such strategy is 
strongly dominated (and more!) by some other strategy. 

LEMMA 1. The operator U” is monotone: If R and Tare sets of strat- 
egy profiles with R c T, then I/“(R) C V(T). 

The proof of Lemma 1 follows directly from the definition of u”. Ex- 
cept in the applications, monotonicity of UE is the only property we shall 
use, so we cast the analysis entirely in terms of monotone operators. 

Note that the definition of UC allows the possibility that for some set of 
profiles T, U”(T) Qt T. In particular, if we begin from some arbitrary set 
TC x ,,eN S, and proceed to apply u” in an iterative fashion, it is possible 
that some strategies not in Twill be introduced somewhere in the process. 
Nevertheless, as the following lemma verifies, if T = S, the entire strategy 
space, this cannot occur: U&%Y), the kth iterate of u”(S), is the outcome 
of k rounds of crossing out E-dominated strategies starting from S, be- 
cause when the starting set is S, no crossed-out strategy is ever reintro- 
duced . 

LEMMA 2. For any monotone operator J andfor all k L 0, Jk+‘(S) c 
Jk(S). 

Proof. The conclusion is obvious for k = 0. Suppose it holds for k = j, 
so that Jj+l(S) G Jj(S). Then by monotonicity of J, Jj+2(S) C Jj+*(S). w 

In view of Lemma 2, it is natural to define J”(S) as follows: 

DEFINITION. For any monotone operator J, J”(S) = n;=, Jk(S). 
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It is in terms of U”” that we define the serially undominated strategy 
sets. 

DEFINITION. The strategy profile x is said to be serially undominated 
if x E U@(S). 

We may use the operators U” to define what we mean by adaptive 
learning. The first definition holds that the process {x(t)} is consistent with 
adaptive learning if each player can eventually find a way to justify its 
choices in terms of the competitors’ past play. 

DEFINITIONS. A sequence of strategies {xn(t)} is consistent with 
adaptive learning by player n if (Vs > O)(Vf)(3i)(Vt 2 f) xn(t) E Ui({x(s) ( 
t^ 5 s < t}). A sequence of strategy projiles {x(t)} is consistent with 
adaptive learning if each {xn(t)} has the property. 

For games with finite strategy spaces, {xn(t)} is consistent with adaptive 
learning if and only if the condition in the definition holds with E = 0, 
leading to a simpler theory. For infinite games, however, adaptive learn- 
ing is somewhat more inclusive. 

Let Gi be the empirical distribution of player n’s choices up to and 
including date t, GC, the empirical joint distribution of the other player’s 
choices, and G’ the empirical joint distribution of all the players’ choices. 

DEFINITION. A sequence of profiles {x(t)} converges omitting correfa- 
tion to a correlated strategy profile G E A(S) if (1) and (2) hold, where: (1) 
Gi converges weakly to the marginal distribution G, for all n and (2) (Vs > 
0)(3i)(Vt 2 i)(Vn) d[x,(t), supp(G,)] < E, where d(x, T) = infyET 11x - ~11. 
The sequence converges to the correlated strategy G E A(S) if, in addi- 
tion, G’ converges weakly to G. 

The definition implies in particular that a sequence {x(t)} converges 
omitting correlation to a mixed strategy Nash equilibrium if it replicates 
the empirical frequency of the separate mixed strategies and if it eventu- 
ally plays only pure strategies that are in or near the support of the 
equilibrium mixed strategies. Full convergence requires in addition that 
the correlation among the individual strategies be replicated asymptoti- 
tally . 

THEOREM 3. (i) Zf {x(t)} converges omitting correlation to a correlated 
equilibrium in the game r, then {x(t)} is consistent with adaptive learning. 

(ii) Suppose that the sequence {x(t)} is consistent with adaptive learn- 
ing and that it converges to a point x *. Then x* is a pure strategy Nash 
equilibrium. 

Theorem 3 is elementary, and we omit its proof. Part (i) of the theorem 
is about the inclusiveness of our definitions; anything that converges to a 
mixed or correlated equilibrium is covered. Part (ii) is about the most 
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important excluded case: adaptive learning excludes any sequence that 
converges to any pure strategy profile other than a Nash equilibrium. 

For players who know the payoff functions, even the relatively weak 
restrictions of adaptive learning may be too severe to encompass all “ra- 
tional” behavior. For example, in a three-player game, if player 3 has 
played a strategy at date r that it had never played before, then player 1 
might anticipate the possibility that player 2 will introduce a new strategy 
next period that performs better against 3’s possible new pattern of play. 
Of course, in the usual fashion of game-theoretic reasoning, 2 might antic- 
ipate l’s response in deciding on its own choice, and more rounds of 
reasoning might be required. 

To accommodate these possibilities, we must introduce some notation. 
Let P”(i, t) = U”({x(s) 1 i _ -C s < t}) and, for k B 1, let P(i, t) = 
U”(F”,k-’ (i, t) U {x(s) 1 t^ I s < t}). The FGk notation is mnemonic for k- 
step forward looking. Thus, the Fe0 notation can be used to describe 
adaptive rules, which are O-step forward looking: the players make 
choices that are justified in terms of competitors’ past play. The profiles in 
F”‘(?, t) are those that can be justified by players who think like player 1 in 
the discussion in the last paragraph. As we add more possible rounds to 
the reasoning process, the set of possible justifications for any particular 
choice at time t expands and so the set of possible justifiable choices 
expands as well. The following lemma verifies that our mathematical 
formulation captures that intuition. 

LEMMA 4. For all k 2 0, FEk(i, t) C FE,k+*(t^, t), 

Proof. Fix (i, t). It is immediate from the definitions that Feo(t^, t) c 
F”‘(i, t). Applying the monotonicity of U” inductively, Fek(i, t) c 
FE*k+‘(i, t). n 

Whereas adaptive learning was defined to include only processes that 
justify choices in terms of past play, we now define sophisticated learning 
to be more inclusive. It incorporates the possibility that a player may 
forecast its competitors’ behavior based jointly on how all the players 
(including itself) have acted in the past and on what all their payoffs are. 
(The player’s own past actions and current payoffs may influence its 
competitors’ current choices, and the player may recognize that.) More- 
over, it imposes no a priori restrictions on the number of iterations of the 
“he may think that I may think that . . .” style of reasoning that is so 
central in rationalizability and traditional equilibrium analyses. 

DEFINITION. A sequence of strategies {x,(t)} is consistent with so- 
phisticated learning if (VE > O)(V~)(%)(Vt > i) x,(t) E U:(F@(i, t)), 
where 

FE”@, t) = u FEk(i, t), 
k=l 
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and the sequence of profiles {x(t)} is consistent with sophisticated learn- 
ing if each {x,(t)} had the property or, equivalently, if (VC > O)(Vi)@r)(Vt 
> t) x(t) E Fyi, 1). 

Sophisticated learners are not necessarily more successful than adap- 
tive learners. For example, in the Battle of the Sexes game shown below, 

L R 

u 2,l 0,o 

D 0,o I,2 

the process {x(t)} in which x(t) = (D, L) for all t is consistent with “so- 
phisticated learning,” because each player is permitted to forecast that 
the other will recognize its true interest and switch at the next round. (Of 
course, as Theorem 5 showed, no such outcome is possible when the 
process is consistent with adaptive learning.) Although sophisticated 
learning does not ensure that only Nash equilibria can be limit points of 
the process, it does impose some restrictions. 

THEOREM 5. Let {x(t)} be consistent with sophisticated learning. 
Then, for each E > 0 and k there exists a time t& after which (i.e., for t 2 
t&) x(t) E UEk(S). 

Proof. Fix any E > 0 and write tk instead of tsk. For k = 0, the 
conclusion holds trivially (choosing to = 0). Suppose the conclusion holds 
for k = j. Then, there is a tj such that for all t 2 tj, {X(S) 1 tj 5 s 5 t} C 
W(S). 

By hypothesis, the process is consistent with sophisticated learning. 
So, in the definition of such processes, we may let i = tj and we may take n - 
tj+l = max(t, t). Let t Z fj+l* Then, x(t) E F”“(tj, t) and we want to show 
that F”“(tj, t) c (U&)j+r(s). We show, equivalently, that F”‘(tj, t) c 
(ve)j+l(s) for all i. 

For i = 0, F”O(tj, t) = U”({X(S) / t,j I s I t}) 5 U’[Ud(S)] = (UE)j”(S), 
by monotonicity of U”. Suppose the conclusion is true for i. In particular, 
by Lemma 2, (U&(j+‘(S) C (UE)J’(S). Then, by monotonicity of U”, 

FE’i+‘(fj, 1) = U”(F”‘(fj, 1) U {X(S) 1 tj 5G S Y5 t}) c U’[U’j(S)] 

= (uE)j+l(s). n 

COROLLARY 6. Let {x(t)} be consistent with sophisticated learning 
and let S,” be the set of strategies that are played injinitely many times in 
CX,~(~)>. Then, x ,EN Sr C U”“(S). In particular, for anyjinite game r, ull 
pluy lies eventually in the set qf serially undominuted strategies @‘(S). 
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Proof. Applying Theorem 5, S” C 13, 13.,~) Us%‘) = 13x CPx(S) = 
lP(S). n 

THEOREM 7. Suppose Uom(S) = {X}. Then Ilx(t) - Xl/ + 0 ifand only if 
{x(t)} is consistent with adaptive learning. Similarly, 11x(t) - XII* 0 ifand 
only if {x(t)} is consistent with sophisticated learning. 

Proof. Suppose [lx(t) - Xl] + 0. Since IT is continuous, (VE > 
0)(3i)(Vt > i)(Vn E N), 

TAX,(~), x-,W> - max{~,(y,, x-,(i)) I yn E SJ < [~,(3 + c/21 
- [max{7rn(yn, X-J ] yn E S,} - c/2] = E. 

Hence, x,(t) E U;({x(i)}) C Uz({x(s) I i I s < t}). Then, x(t) E FOE& t), 
which establishes that convergence can occur only if {X(I)} is consistent 
with adaptive learning and hence only if it is consistent with sophisticated 
learning. 

For the “if” part, let x* be an accumulation point of {x(t)} and assume 
that {x(t)} is consistent with (adaptive or) sophisticated learning. By The- 
orem 5, (Vk)(%)(Vt > i) x(t) E W(S). By Lemma 2 and the compactness 
of P$s), 

x” E ne>o l-l;=, cP(S) 

= f-7;=, n.., U~qs) = l!I.P(S) = {T}, 

where the reversal of intersections is justified because U%Y) is doubly 
monotone (decreasing in k, increasing in E). n 

Although our formulation of learning allows the possibility that players 
may be learning how to optimize in addition to learning what to expect 
from competitors,4 all the studies and algorithms cited in the introduction 
assume that players are always able to optimize given their possibly inac- 
curate forecasts. To establish that our theory subsumes these earlier 
ones, let pn denote a forecasting algorithm for player n, so that ~,,(a / x(s); 
s < t) is a probability distribution over S-, representing what player n 
expects to be played at date t given the history of play (including his own 
play) up to that date. Let A: be a learning algorithm that makes the 
optimizing choices associated with p, that is, A{[x(s); s < t] E argmax 
E{QT,(x,, X-J 1 p,[* ( x(s); s < t]}. Best-reply dynamics, fictitious play, and 
many others are algorithms of this sort. 

For simplicity, let us restrict attention here to games with finite strategy 
sets and to learning that occurs in discrete time. Then, in a small stretch of 

4 In some environments, this extension allows us to encompass “genetic algorithms” of 
the kind studied by Marimon er al. (1989). 
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terminology, we may say that the forecasting algorithm p,, is adaptive if 
for any strategy X, of any player m # II that is played only finitely many 
times in the sequence {x(t)}, pn(x, / x(s); s < t) converges to zero as 
t * 03.5 

THEOREM 8. Let pn be an adaptive forecasting algorithm. Then for 
any sequence of opposing strategy projiles {x-,(t)}, the induced sequence 
{x,&N = {A:[x(s); s < tl) is consistent with adaptive learning. 

The proof of Theorem 8 for this finite strategy case is obvious: Player 
n’s choices under A: are eventually best-responses to some probability 
distribution over those opposing strategies that will be played infinitely 
often. Thus, for all 7, the choices {x,Jt)} lie eventually in Ui({x(s) 1 i I s I 
t}), which is the definition of the phrase “{xn(t)} is consistent with adap- 
tive learning.” 

Since the forecasts implicit in Cournot’s best-reply dynamics, Brown’s 
fictitious play, and Bayesian learning are all adaptive, our theory contains 
those examples as special cases. Similarly, if a player were to use Bay- 
esian statistical methods, for example, to estimate a matrix whose ele- 
ments are the conditional probabilities that a particular profile x-, is 
played given a specification of the k previous plays {x(t - k), . . . , x(t - 
l)}, the forecasts would be adaptive. This example illustrates how our 
theory encompasses learning strategies that can recognize cycles. Fur- 
thermore, if {p;, . . . , p”,} is a set of adaptive forecasting algorithms, 
then one can verify that any algorithm q,, whose forecasts always lie in the 
convex hull of those generated by the set {pt, . . . , pi} is another 
adaptive forecasting algorithm. This means that any procedure for select- 
ing among or weighting the forecasts of a finite set of adaptive forecasting 
algorithms, for example, on the basis of past performance, is another 
adaptive forecasting algorithm: Learning how to forecast is consistent 
with adaptive learning. 

2. STOCHASTIC LEARNING PROCESSES INVOLVING EXPERIMENTATION 

So far, we have formulated our concepts so that if occasional mistakes 
are made over an infinite horizon, then play is inconsistent with adaptive 
learning even if the mistakes eventually become very rare. This formula- 
tion is at odds with the idea that learning might be based on experimenta- 
tion-an idea that has recently been incorporated in a formal model by 
Fudenberg and Kreps (1988). 

s For the general case of compact strategy sets and time which may be modeled as 
continuous, we may define p to be an adaptive forecasting algorithm if the probability 
assigned to any compact set of strategies from which no plays are chosen after some date i 
converges to zero as t goes to infinity. With this definition, Theorem 8 can be proved for the 
general case. 
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Let I’ be a noncooperative game with a finite player set and a finite 
strategy set S. We follow Fudenberg and Kreps (1988) in supposing that at 
each date t, player n conducts an experiment with probability .s,t in an 
attempt to learn its best play. Player 11’s decision to experiment at any 
date is assumed to be independent of any contemporaneous decisions of 
the other players, and n’s experiments eventually become rare (enr --;, 0 as 
t t 03). However, the number of experiments that player n conducts 
eventually is infinite (Et .snt = 03). This latter assumption ensures that the 
player experiments often enough that if its competitors’ behavior ever 
settles down to a stationary distribution, the player would learn to play a 
best reply. We assume that when the player experiments, it selects each 
of its finite number of strategies with equal probability. 

Suppose that when player n does not experiment at a given date, it 
picks a strategy that is among those with the highest average payoff on 
past dates of experimentation. Adaptive behavior of this general kind 
might be sensible if the player has no idea what the environment is like, 
how many players there may be, what strategies they have played at any 
round, or even whether a game against maximizing players is being 
played, but knows only what strategies it has played and what payoffs it 
has earned on the dates when it has experimented. Given any realization 
w of the player’s randomized choices, let {t(k, w)} be the subsequence of 
dates at which player 12 conducts no experiment. 

THEOREM 9. For anyfinite strategy game r, the sequence {x,(t(k, w))} 
constructed as described above is consistent with adaptive learning (al- 
most surely). 

The proof is given in the Appendix. 
In formulating Theorem 9, we have assumed that at each date player n 

uses only information about the payoffs earned at dates ofexperimenta- 
tion. The reader is warned that the extension to the case where the play- 
ers use information about the strategies they have chosen and the payoffs 
they have earned at all dates is not straightforward. Because the player 
randomizes strategy choices at dates of experimentation but not at other 
dates, naive estimates based on the payoffs at the experimentation dates 
are always unbiased. A player who wishes to take advantage of experi- 
ence gained at other dates may need to use sophisticated statistical tech- 
niques to avoid having the estimates contaminated by selection bias. 

3. APPLICATIONS 

The key to the applications of this theory lies in an investigation of the 
sets V’(S). For a game with N players each having k strategies, if the 
payoffs are picked at random from [O,l] using some continuous distribu- 
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tion, then the expected number of strongly dominated strategies can be 
shown to be equal to N(k - 1)1?-~. , which tends to zero as k and N grow 
large. So, for “generic large games,” there are usually no strongly domi- 
nated strategies, and then no general restrictions are implied by our the- 
ory about which strategies can be played infinitely often. Nevertheless, 
for many game models that have attracted the interest of applied research- 
ers, our theory does imply surprisingly strong restrictions. 

An important class of games for which our theory is useful is the class 
of “games with strategic complementarities,” as variously defined by 
several authors. This class includes the supermodular games of Topkis 
(1979) and Vives (1990), in which the strategy sets are complete lattices6 
and the incremental return to any player from increasing his strategy in 
the lattice order is a nondecreasing function of the strategy choices of the 
other players. Membership in this class of games is often easy to check. 
Indeed, if the payoff functions are smooth and (as in many applications) 
the strategy spaces are compact intervals in R, then r is a supermodular 
game if and only if &r,J&K,,&x,,, 2 0 for all m # n. 

Milgrom and Roberts (1990) (hereafter denoted as MR) use a more 
inclusive definition, defining a game as having strategic complementarities 
if there exist any strictly increasing functions.6, such that the game with 
the transformed payoffsJ;,(r,,(x,, , x .~,,)) is a supermodular game. Milgrom 
and Shannon (1991) (hereafter MS) provide a still more inclusive (but 
harder to check) definition. For the case where the strategy sets are 
totally ordered (e.g., subsets of the real line), they define the class of 
games with strategic complementarities as those for which the following 
(“single-crossing”) conditions hold: 

For all X, y E S with x 2 y,’ 

[rn(xn, Y-J 2 T,(Y,, Y-AI 3 [T&,, X-J 2 T,(Y,, ~41 and 

[~n(Xn, Y-n) > 7T,(Yn, Y-J 3 [n&n, x-n) > 7Tn(Yn, x-,)1. 

For the analysis of these games, we may define monotone operators UP 
(mnemonic for undominuted in pure strategies) and Z (mnemonic for inter- 
val), as follows. 

DEFINITIONS. Given T C S, let 

(I) [T] = {x E S 1 inf(T) 5 x 5 sup(T)} 
(2) UP,(T) = {x,, E S,, 1 WY,, E Sr,)(3-,, E L,) n-Ax,, z-n) 2 

DAY,, 7 Z-J 

6 A complete lattice is a partially ordered set S, with the property that every subset T, has 
an infimum and a supremum in S, . 

’ For our applications here, this may be read as a simple vector inequality, where each 
player’s strategy space is a compact subset of the real line R. 
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(3) up(T) = XnEN UP,(T) 
(4) Z(T) = UP(m). 

The operator Z will be especially useful in studying learning rules in 
which the player is allowed to reason in the following kind of way: “My 
competitor has set prices of 5 and 6 in the past two periods, so it seems 
reasonable to entertain the possibility that it might set some price between 
5 and 6 in the current period.” Similarly, “Since I have set prices of 3 and 
4 in the past two periods, my competitors might expect me to set some 
price between 3 and 4 next period, and might respond accordingly.” 

Since Z is the composition of the two monotone operators UP(.) and [.I, 
Z is itself a monotone operator. So, by the very same arguments that we 
have used in Theorem 5 for the operator U, if the players eventually 
choose the strategy profile x(r) from the set Z({x(s); t 2 s 2 t^}>, play 
eventually lies in the set Zk(s). How large is this set? The next two theo- 
rems provide the answer. 

THEOREM 10. Let I7 be a game with strategic complementarities. 
Then, both _x = inf(Z”(S)) and X = sup(Z”(S)) are pure strategy Nash 
equilibrium projiles (and therefore elements of Uooo(S)). 

Proofs of Theorem 10 are given in MR and MS, using their respective 
definitions of the phrase “strategic compementarities.” 

THEOREM 11. Let r be a game with strategic compementarities and 
let PNE denote the set of pure Nash equilibrium profiles. Then, the 
bounds on joint behavior predicted by the various ‘tjusti$cation” con- 
cepts coincide: 

[UO”(S)] = [UP=(S)] = [Z=(S)] = [PNEI. 

Proof. Since for all T, UO(T) c UP(T) C Z(T) and since the operators 
are all monotone nondecreasing, it follows by induction on k that for all T, 
Uok(T) C UPk(T) C Zk(T) and hence that U&(S) C UP”(S) c Z”(S). Using 
the notation and results of Theorem 9, b, X} c V@(S) and Z”(S) = [b, X}] 
= [PNE]. Applying the monotone operator [*I to these inclusions yields 
Lb, 211 C [U@Wl C [UP”(S)1 C [Z”(S)1 = [[{z, X)11 = [Cx, 41 = [PAW, 
where the next-to-last equality follows from the fact that for all T, inf([T]) 
= inf(T) and sup([Tj) = sup(T). w 

We will illustrate the power of these theorems with a series of three 
applications, in each of which the serially undominated set U”“(S) is a 
singleton. It follows that for each application, there exists a unique Nash 
equilibrium and that {x(t)} converges to this equilibrium if and only if it is 
consistent with adaptive learning (and if and only if it is consistent with 
sophisticated learning). Additional applications can be found in MR and 
MS. 
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EXAMPLE 1: COURNOT'S DUOPOLY MODEL. Let the market demand 
function be given by P = f(Q), where f(*> is continuous and decreasing 
and where f’(Q) + Qfll(Q) is nowhere positive. Following Cournot, let 
the two market participants have zero costs of production and suppose 
that the strategy spaces are specified as S, = [O,a. Then, essentially as 
Moulin (1986, Chap. 6) has shown, U@(S) is a singleton (the game is 
“dominance solvable”)s and so Theorem 7 applies: all behavior that is 
consistent with adaptive or sophisticated learning converges to the unique 
Nash equilibrium. This significantly expands Cournot’s conclusion that 
the quantities chosen using best-reply dynamics converge to the unique 
equilibrium in the Cournot game. 

EXAMPLE 2: BERTRAND OLIGOPOLY WITH DIFFERENTIATED PROD- 
UCTS. Let the demand for product II be given by q,, = D,(p), where p = 
(Pm; m E N), and suppose that the demand for good n becomes less 
elastic as ppn increases (a*log(o,,(p))lalog(p,,)ap,,, > 0 for m # n). For 
substitute products, this condition is satisfied by the linear, logit, and CES 
demand functions, and by translog demand with certain parameter restric- 
tions. Let the costs of production be C,,(q,,) = c,q,, and let S,, = [c,!, PI. 
Then, as shown in MR, this game has a unique Nash equilibrium and the 
transformed game with payoffs log(?r,l) is a supermodular game.’ It then 
follows from Theorem 10 that r/O%(S) is a singleton, so a process {x(t)} 
converges to the unique equilibrium if and only if {x(t)} is consistent with 
adaptive learning. 

EXAMPLE 3: GENERAL EQUILIBRIUM WITH GROSS SUBSTITUTES. Ar- 
row and Hurwicz (1958) and Arrow et al. (1959) proved that any general 
equilibrium system satisfying the gross substitutability condition is stable 
under a class of continuous-time tatonnement price adjustment processes. 
Because the definitions and proofs in this paper make no use of the hy- 
pothesis that time is discrete, our theorems can be applied to these contin- 
uous-time models as well as to the discrete models that are more com- 
monly used to describe learning in games. 

For the general equilibrium system, suppose that there are L + 1 com- 
modities and that one is specified as the muneraire. Let there be L players 
and let player n name a price pn E S, = [O,m]; player IZ may be called the 
“market maker” for good n. We assume that the excess demand for 
commodity 12 is q,, = qn(p) and that it has the following properties: qn is 
continuous, nonincreasing in p,, and nondecreasing in p-,, (gross substi- 

K Moulin defines dominance solvability using weak dominance, but his argument can be 
extended to the case of strong dominance with no difficulty. Alternatively, the same conch- 
sion can be reached using the theory of supermodular games. See Milgrom and Roberts 

(1990). 
9 To verify this, observe that a*~,lap,dp, = a*log[(p, - c,)D,(p)l/ap,ap, = [#log(D,(p))/ 

md~nmml . ahamp, 2 0. 
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tutes). Also, q,(m,p-,) < 0 and qn(O,p,) > 0. Let player n’s payoff be 
given by r,(p) = -(q,,(p)I. By inspection, any pure strategy Nash equilib- 
riump of this game is a competitive equilibrium, that is, q(p) = 0. Arrow 
and Hurwicz showed that, with these assumptions, there is a unique 
competitive equilibrium. It is shown in MS that this game is one with 
strategic complementarities. Therefore, by Theorem IO, CP(S) = {p}. 

In conjunction with Theorem 7, this is a powerful conclusion. To illus- 
trate its force, suppose that each market maker bases the price adjustment 
on some distributed lag estimate using past realized price choices of the 
other market makers. Any distributed lag will do; and each market maker 
can use a different distribution and the price process can start anywhere. 
The process will always converge to the competitive equilibrium. 

THEOREM 12. For any family of probability distributions G, (n = 
1 2. *. , N) on [O,w) and any p(O), q(0) E RN, ij" 

h(t) = I,’ qnbn(th p-At - s)ldGnW + (1 - G,(tNq.(0) (*I 

and if demand satisfies the assumptions stated above, then p(t) converges 
to the unique competitive equilibrium. 

Proof. Fix E and define T(i, t) = {p(s) 1 i I s < t} and D(i, t) = U&(T(i, 
t)). Since qn( p,, , p-,) is nonincreasing in pn , D(l, t) is an interval which we 
may write as [p(i, t), p(i, t)]. Since T(i, t) grows with increasing t and 
since U” is monotone, D(i, t) grows with increasing t. Hence, 
p(l, r) can only decrease and p(l, t) increase with t. - 

Suppose that p,(t) e D,,(t^, t), for example, p,(t) > p,,(i, t). Then 
qn(pn(t), p-J < -E for all p E T(i, t). So, by (*), there is a i such that if t 
> tand p,(t) $ D,(i, t), then b,,(t) < -c/2. Hence, (%)(Vr > I> p,,(t) < 
P,(i, t). Similarly, (&)(Vt > 7) p,,(t) > p,,(i, t). These imply that p,,(t) E 
D,(i, t), so {p(t)} is consistent with adaptive learning using u”. The de- 
sired conclusion then follows from Theorem 7. n 

Thus, for example, if information processing is delayed so that the 
market can adjust current prices only on the basis of last quarter’s de- 
mand, prices will nevertheless converge to the competitive equilibrium 
levels. 

Extensions of Theorem 11 are easily found. The lag coefficients G,(s) 
can be replaced by nonstationary coefficients H,(s, t), provided inf,H,,(., 
t) is a probability distribution. This extension allows the possibility that 
the demand data used for price adjustment in the various goods markets 
become available only at nonsynchronized discrete time intervals. Simi- 
larly, various transformations of the demand data in the integrand and of 
the rate of adjustment can be accommodated. For example, tin(t) might be 
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set equal to + 1 or - 1, according to whether the integral is positive or 
negative. 

4. DISCUSSION 

In general games, our conditions of consistency with adaptive (or so- 
phisticated) learning impose a joint restriction on the game and the play- 
ers’ learning processes. It is hardly a surprise that one can express a 
necessary condition for convergence to equilibrium in this general form. 
It is rather more surprising that the condition is sufficient, by itself, to 
imply “convergence” into the set of serially undominated strategies and 
especially that it is so easy to prove that best reply dynamics, fictitious 
play, and various other processes are consistent with adaptive learning 
for all normal-form games in the broad class that we have studied. A 
second surprise is that for certain (nongeneric) examples of games that 
have historically attracted the interest of economists, the necessary learn- 
ing conditions are also sufficient to imply that behavior converges to the 
unique equilibrium. 

It had once been thought that convergence in these games that econo- 
mists have studied depended very much on the algorithms that were used. 
For example, in the general equilibrium example, the analogy with known 
results about optimization algorithms inspired some to think that the 
damping imposed by the continuous time dynamics played an important 
role in facilitating convergence (see the discussion in Arrow and Hurwicz 
(1958)). One of the lessons of our analysis is that convergence can be 
almost solely a property of the game being studied: “nearly everything” 
converges to equilibrium in the three economic applications that we stud- 
ied. 

Generic games do not enjoy the special structure that we have exploited 
in our analysis for applications. It is still important, therefore, to explore 
processes that are robustly convergent for a wider class of games, and 
perhaps for all games. The hope is that such a theory would be analogous 
to the theory of “refinements,” predicting the relative likelihood of vari- 
ous equilibria as the outcome of learning in a way that might be tested in 
laboratory experiments. Jordan (1991) makes progress along that line, 
showing that in a model where uncertainty about competitors’ play can be 
represented as due to differences in types, if all the players engage in 
Bayesian learning about each others’ types, then play converges to a full 
information Nash equilibrium-a stronger conclusion than we have ob- 
tained for general learning models. Jordan’s model provides an example 
of a setting in which one might usefully investigate which equilibria are 
most likely to arise as the result of adaptive learning. 
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APPENDIX: PROOF OF THEOREM 9 

Let M(xn, t) be the number of experiments using x, conducted by 
player n by time t and let M(t) be the expected total number of experi- 
ments using all the player’s strategies. Let x-,Jt, w) be the strategy combi- 
nation played at date c by n’s competitors. Fix i and define T = {x(t) 1 t 2 
i, t f$ D}, where D is the set of dates at which experiments are conducted. 
Since the strategy sets are finite, there is some date i 2 i by which all the 
strategies in T,,, for all m # n have already been played and the “‘justifi- 
able” strategy profiles are eventually limited to those in U(T). 

Suppose that x,, 4 U,,(T). To establish that the play is consistent with 
adaptive learning, we need to show that there is some date t’ after which 
xn is no longer played, except during periods of experimentation. Since S,, 
is finite and x, @ U,,(T), Cly,, E S,,)(~E > ONVz E T) ~T,,(x,, , Z-J < T,,(Y,, , 
z-,,) + 2.5. Let P(x,,, t, o) be the total payoff at experimental dates when 
x, is played and define P( y,, , 1. w) similarly. Suppressing w from the 
notation, we are given that n will not play x,, at any nonexperimental date 
where P(x,, , t)lM(x,, , t) < P( y,, , r)lM( y,, , t), so it suffices to show that, 
with probability one, there exists a date after which this inequality always 
holds. By the Strong Law of Large Numbers, M(x,, , [)/M(r) and M( y,, , t)l 
M(t) both converge almost surely to I/ 1 S,, 1 (where 1 S,, I is the cardinality 
of S,,). Consequently, it suffices to show that for large t, P(x,,, t)lM(r) < 
P(y,, [)/M(r) or that P(x,, , t) < P(y,, , t) - FM(~)/ Is,,~. Observe that M(t) = 
c ?<I En,. 

Let A/2 be a bound for InnI and let t’ be large enough that for all player 
indexes m and all t > t’, xCmE,, E,, < E/A. 

Let F, be the history of play through time t. At any date t + 1, the 
choice by player IZ to experiment and, if so, which strategy to choose are 
(by assumption) independent of X-,Jt + 1). So, 

ElP(xn, T +I) - P(y,,, T + I) IF,1 - Ptx,,, T) - Pty,,, T) = (.z,.,+,/IS,I) 
. E[~n(xn> X-,,(T + 1)) - n,ky,,, x-,,(T + lNIF,l < f’tx,,, 7) 
- p(Yn, 7) - (2&,,,,+1#nl)E. 

Taking expectations and summing over T, we get a telescoping series 
which yields 

am,, t) - ey,, t)l < -(24&I) $ E,, = -(24S,] ) . M(t). 

Since 17~,] < A/2 and the probability of a change in [P(x,, , t) - P( y,, , t)] 
from date t - I to date t is ~E~+,I]S,,], 
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Var[W n , t) - P(y,, t)] 5 (2A24S,() i: E,,T = (2A*d(S,j ) . M(t). 

If follows from a supermartingale convergence theorem (Breiman, 1968, 
Theorem 5.23) that P(x,, t) - P( yn , t) + &M(f)/ I&J is a supermartingale 
converging to --cc, 
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