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Two-sided matching markets of the kind known as the “college admissions 
problem” have been widely thought to be virtually equivalent to the simpler 
“marriage problem” for which some striking results concerning agents’ preferences 
and incentives have been recently obtained. It is shown here that some of these 
results do not generalize to the college admissions problem, contrary to a number 
of assertions in the recent literature. No stable matching procedure exists that 
makes it a dominant strategy for colleges to reveal their true preferences, and some 
outcomes may be preferred by all colleges to the college-optimal stable outcome. 
Journal of Economic Literature Classification Numbers: 025,026,820. CC 1985 
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1. INTRODUCTION 

This paper consic ers the preferences and incentives of agents in two- 
sided markets involv,ng disjoint sets of agents (e.g., firms and workers). A 
particularly simple ex; mple of the kind of market to be considered here is 
the labor market for I esident physicians studied in [S], in which the two 
sides of the market ar : hospitals and graduating medical students. En that 
market, each student s :eks one job, and each hospital seeks a fixed number 
of students. This mark :t is an example of the “‘college admissions problem” 
studied by Gale and 3hapley [33, who focused attention on the special 
case called the “marr: age problem,” in which every agent seeks a match 
with exactly one agent on the other side of the market. 

Here it will be shop n that the incentives facing the agents in the college 
admissions problem a .e quite different from those found in the marriage 
problem (see, e.g., [6J ). This comes as a consi erable surprise, since the 

*This paper is a revision of a working paper entitled “Incentives in the College Admissions 
Problem and Related Two-Sided Markets.” This work has been supported by grants from the 
National Science Foundation and the Oftice of Naval Research, and by Fellowships from the 
John Simon Guggenheim Memorial Foundation and the Alfred P. Sloan Foundation. 
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college admissions problem has come to be regarded as virtually equivalent 
to the marriage problem, and as a result the recent literature on the subject 
contains a number of misleading statements on precisely this issue. The 
cause of this confusion turns out to be a subtle kind of incompleteness in 
the traditional formulation of the college admissions problem. 

2. THE MARRIAGE PROBLEM 

The agents in the marriage problem consist of two disjoint sets 
M=(m, ,..., m,] and W=(w, ,..., w,> (“men” and “women”). Each man 
has a complete preference ordering over the set Wu (u}, and each woman 
has a complete preference ordering over Mu {u>, where u denotes the 
possibility of remaining unmarried. That is, each agent can compare the 
desirability of each of his or her potential assignments, which are the agents 
from the opposite set and the possibility of remaining unmarried. An 
agent’s preferences are called strict if he or she is not indifferent between 
any two distinct potential assignments. It will be sufftcient for the purpose 
of this paper to only consider the case in which all agents have strict 
preferences, and this will henceforth be assumed. Let wjP(m) wk denote that 
man rn prefers woman wI to woman wk, and let wjR(m)w, denote that he 
either prefers wj to wk or else is indifferent. (Note that he can only be indif- 
ferent ifj= k, since all preferences are strict.) Similar notation will be used 
for the preferences of the women, and P= (P(ml) ,..., P(m,), P(wl) ,..., 
P(w,)) will denote the vector of preference orderings of each agent. 

An outcome of the marriage problem is defined by a function 
x: Mu W+Mu Wu (u}, such that, for any m in M and w  in W, 
x(m) = w  if and only if x(w) = m. An outcome x matches a subset of the 
men with a subset of the women in monogamous marriages, and leaves the 
remainder of the men and women unmarried. The preferences of the agents 
over alternative outcomes x and y correspond precisely to their preferences 
over their potential assignments; i.e., each man prefers x to y if and only if 
he prefers x(m) to y(m), and similarly for each woman. An outcome x is 
called individually rational if no man or woman prefers u (being unmarried) 
to the assignment x(m) or x(w), respectively; i.e., if x(m) R(m)u and 
x(w) R(w) u for all m in A4 and w  in W. 

An outcome x is unstable if it is not individually rational or if there exist 
a man m and a woman w  who prefer each other to their assignment at x; 
i.e., a man m and a woman w  for whom wP(m) x(m) and mP(w) x(w). An 
outcome x that is not unstable is stable. The set of stable outcomes con- 
stitutes the core of the game whose rules are that any man and woman may 
marry if and only if they both agree, and each agent may choose to remain 
unmarried. The set of stable outcomes with respect to a vector P of 
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preferences is therefore denoted C(P). For any man m the set of achievable 
assignments will be the set A,(P) = {x(m) 1 x is in C(P)) of assignments 
achieved at some stable outcome, and the set of achievable assignments for 
each woman is defined analogously. (An achievable assignment for an 
agent may be either an agent from the opposite set, or else the 
assignment u.) 

We can now state the following results about the structure of the set of 
stable outcomes. (Theorems 1 and 2 are originally found in [3] and 
Theorem 3 in [6].) 

THEOREM 1. For any vector P of preference orderings, the set C(P) of 
stable outcomes of the marriage problem is nonempty. 

THEOREM 2. The set C(P) of stable outcomes of the marriage problem 
contains an M-optimal stable outcome xx with the property that, for every 
man m in A&, x*(m) is man m’s most preferred achievable assignment; i.e., 
x*(m) R(m) x(m) for any other stable outcome x. Similarly, it contains a IV- 
optimal stable outcome y* such that y*(w) R(w) x(w) for every woman w  
and any stable outcome x. 

THEOREM 3. There does not exist any outcome y that every man prefers 
to the M-optimal stable outcome x* in the marriage problem; i.e., for no out- 
come y is it the case that y(m) P(m) x*(m) for all m in M. Similarly, there 
exists no outcome z preferred by all the women to y*. 

Theorem 2 establishes the existence of a stable outcome X* with the sur- 
prising property that all the men are in agreement that it is the best stable 
outcome. By symmetry, there also exists a W-optimal stable outcome y” 
with corresponding properties, and it turns out that the optimal stable out- 
come for one side of the market is the worst stable outcome for every agent 
on the other side of the market. Theorem 3 states that there does not even 
exist an unstable outcome that all the men prefer to x*, although it turns 
out (cf. Sec. 6 of [6]) that there can exist unstable outcomes that all men 
like at least as well as x* and some men prefer. An algorithm to construct 
the outcome x* was presented in [3]. 

Since an agent’s preferences are typically known only to himself9 we can 
consider what incentives an agent might have to reveal his true 
For the sake of clarity, consider a situation in which some centralized 
procedure is employed to produce an outcome from any vector B of sttict 
preferences that might be stated by the agents. Such a procedure will be 
called a stable matching procedure if the outcome x(P) it produces is always 
stable with respect to the stated preferences; i.e., if .X(P) is contained in 
G(P) for any stated preferences P. 
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Let the true preferences of the agents be given by the vector P* of 
preference orderings. The adoption of any particular matching procedure 
gives rise to a strategic game, in which each agent’s strategy set is the set of 
all possible strict preference orderings he might state. We can now ask if 
the adoption of some stable matching procedure will always give all or 
some of the agents the incentive to state their true preferences; i.e., if it will 
make it a dominant strategy for an agent m or w  to always state the true 
preference P*(m) or P*(w) rather than some other preference P(m) or 
P(w). The following two results are from Roth [S]. 

THEOREM 4. There exists no stable matching procedure for the marriage 
problem which makes it a dominant strategy for all agents to state their true 
preferences. 

THEOREM 5. The matching procedure that always yields the M-optimal 
stable outcome x*(P) for any stated preferences P makes it a dominant 
strategy for every m in M to state his true preferences in the marriage 
problem. Similarly, a procedure that always yields y*(P) makes it a 
dominant strategy for every w  in W to state her true preferences. 

Dubins and Freedman [ 1 ] present an extension of Theorem 5 that states 
that in fact no coalition of men can all misstate their preferences in such a 
way that every member of the coalition receives a match he (strictly) 
prefers to his assignment at x*(P*). 

We can now consider the extent to which these results generalize to the 
college admissions problems. 

3. THE COLLEGE ADMISSIONS PROBLEM 

The agents in the college admissions problem consist of two disjoint sets 
c= (c 1 ,..., c,} and S= {sr ,..., s,} (“colleges” and “students”). Each college 
ci has a quota qi which is the number of students for which it has places. 
Each student s has a strict preference ordering P(s) over the set Cu (u}, 
and each college c has a strict preference ordering P(c) over the set 
Su {u>. An outcome of the college iadmissions problem is defined by a 
correspondence x : C u S -+ C u S u (u} such that Ix(s)1 = 1 for all s in S, 
Ix(ci)l = qi for all ci in C, and, for any c in C and s in S, x(s) = c if and only 
if s is an element of x(c). That is, an outcome assigns a subset of the 
students to a subset of the places and leaves the rest of the students and 
places unmatched. (If a college with quota q is assigned some number k < q 
of students at an outcome x, then q-k elements of x(c) are equal to u.) 
No student is assigned to more than one place, and no college is assigned 
more than its quota of students. 
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An outcome x is individually rational if for every student s X(S) 
and if for every college c and d in x(c), oR(c)u, where R denotes preference 
or indifference as in Section 2. An outcome x is unstable if it is not 
individually rational or if there exist a college ci and a student sj who each 
prefer one another to one of their assignments; i.e., such that c,P(sj) x(3,) 
and s,P(c,)o for some B in x(ci). An outcome x that is not unstable will be 
called stable, and the set of stable outcomes with respect to any vector P of 
preference orderings will again be denoted C(P). A student s and college c 
will be said to be achievable for one another if there is some outcome x in 
C(P) such that x(c) contains s. This completes the traditional specification 
of the college admissions problem, and it is easy to see that the marriage 
problem is the special case of the college admissions problem that arises 
when each college has a quota of 1 (i.e., when qi= 1 for every ci in C). 

Gale and Shapley [3] observed that the algorithm discussed for the 
marriage problem could be modified for the college admissions problem. 
Theorems 1 and 2 can then be extended to the coilege admissions problem, 
as follows.’ 

THEOREM I*. For any vector P of preference orderings. the set C(P) of 
stable outcomes of the college admissions problem is ~o~er~pty. 

THEOREM 2*. The set C(P) of stable outcomes qf the coI/ege admissions 
problem contains a C-optimal stable outcome xii: with the property that, J”OU 

every c in C with quota q, x(c) contains college c’s q most preferred 
achievable students if the number k of students achievable for c is at least q, 
and otherwise it contains all of c’s achievable students (and leaves q-k 
positions unmatched). The set C(P) also contains an S-optimal stable ou.t- 
come y* with the property that y*(s) R(s) x(s) for any studelzt s and stable 
outcome x. 

When we try to extend Theorem 3, however, we see that the formulation 
of the college admissions problem given above is not complete enough to 
allow the theorem to be meaningfully stated. This is because -we cannot 
state whether a college prefers one outcome to another until we have 
specified its preferences over outcomes, and so far we have only specified its 
preferences over students. Even if we continue to consider only the case in 
which a college’s preferences over outcomes are determined entirely by its 

’ Note that Theorem 2* reduces to Theorem 2 when all quotas equal 1, but that it has some 
additional power in the general case. In the set of stable outcomes, a college need make no 
tradeoffs between achievable students. The theorem implies, for example, that if a college c 
wirh a quota of q = 2 positions is matched with its first and third choice students at one stable 
outcome, and with its second and fourth choice students at another stable outcome, then at 
the outcome X* it is matched wi?h its first and second choice students. 
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own assignment of students, each college whose quota is greater than 1 will 
have to make comparisons of sets of students, and the preferences of 
colleges over such sets have yet to be specified. 

It has nevertheless often been asserted in the literature that even when 
quotas may be greater than 1, the college admissions problem may be 
treated as a straightforward extension of the marriage problem. In the 
introduction to a paper whose formal treatment dealt with the marriage 
problem, I made an incautious comment of this sort (see [S]), as did 
Dubins and Freedman [l] in a concluding section of their paper that was 
intended to extend to the college admissions problem their results on the 
marriage problem. Gale and Sotomayor [4] sketch a formal proof of the 
equivalence of the two problems that will be useful to refer to later. They 
say the following about the college admissions problem: 

As in previous treatments of the problem, we begin by reducing it to the special 
case in which each institution has a quota of one. This is done by the following 
device: we replace institution A by qa copies of A denoted by A,, AZ,..., AqA. Each 
of these Ai has preferences identical with those of A but with a quota of 1. Further, 
each applicant who has A on his preference list now replace A by the string 
A,, A?,..., A,, in that order of preference. It is now easy to verify that the stable 
matchings for the original problem are in natural one-to-one correspondence with 
the stable matchings of this modified model. With this modification, the model 
becomes completely symmetric in the applicants and institutions. To reflect this, we 
make the usual change of scenario to that of the “stable marriage problem” in 
which instead of applicants and institutions, we consider men and women and think 
of the matchings as (monogamous) marriages. 

Gale and Sotomayer go on to review a number of results for the marriage 
problem, including Theorems 1, 2, 3, and 5 of the previous section. 
However we will see below that, although the conclusions of Theorems 1, 
2, and also 4 apply to the college admissions problem, the conclusions of 
Theorems 3 and 5 do not. 

The problem cannot be fixed simply by completing the specification of 
the model by specifying the preferences of colleges for sets of students. 
When the model is completely specified in this way, the conclusions of 
Theorems 3 and 5 will be false, so long as the preferences of colleges for 
sets of students are related to their preferences for individual students in a 
plausible way. Specifically, let P”(c) denote the preference relation of 
college c over all assignments x(c) that it could receive at some outcome x 
of the college admissions problemm. A college c’s preferences P+(c) will be 
called responsive to its preferences P(c) over individual assignments if 
y(c) P”(c) x(c) whenever y(c) is obtained from x(c) by replacing some 
student sj (or U) in x(c) with a preferred student sk who is not in x(c); i.e., 
whenever y(c)=x(c)u {s~)\{c} f or c in x(c) and sk not in x(c) such that 
sk P(c) 0. That is, a college c has responsive preferences over assignments if, 
for any two assignments that differ in only one student, it prefers the 
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assignment containing the more preferred student. For example, if x(c) 
assigns college c its 3rd and 4th choice students, and y(c) assigns it its 2n 
and 4th choice students, the college c prefers y(c) to x(c) if its preferences 
are responsive. 

PROPOSITION 1. When colleges have responsive preferences, the ~o~clMsio~ 
of Theorem 3 is false,for the college admissions problem: there may exist out- 
comes that all colleges strictly prefer to the C-optimal stable outcome. 

The proof will be by means of an example. 

ProoJ: Consider the problem consisting of three colleges 
C= (cl, c?, c3} and four students S= (sl, s2, sX, sq). College c, has a 
quota of q1 = 2, and both other colleges have a quota of 1. Each of 
the colleges prefers each of the students to leaving a position unmatched, 
and colleges c1 and c, both prefer lower-numbered students to higher- 
number students, so their true preferences P* are given by 
s,p*(c,) s,p*(c,) s,p*(c,) s,p*(c,)u, and sla*(c,)~2P*(~2)~~P*(~Z) 
s,P*(c,)u. The preference ordering of the third college is given by 
sSP*(c3) SUB* s,P*(c,) s,P*(c,)u. The preference orderings of stu- 
dents s1 through sq are given by c3P”(s,) c,P*(s,) c,P*(s,)u; 
c2P*(s2) c,P*(s,) c3P*(s,)u; c1P*(s3))) c,P*(s,) c,P*(s,)u; and c,P*(s,) 
c2P*(s4) c,P*(s,)u. This information is summarized in Table I. 

It is straightforward to verify that the C-optimal stable outcome in the 
set C(P*) is the outcome x=x*(P) such that x(rI) = (s~‘s,>, x(c2)= 
Is?>, and .‘c(c3) = {s1>. That is, x*(P*) gives college c, its 3rd an 

TABLE 1 

41=2 42= 1 43=1 

Nores. Proposition 1. All colleges prefer y to x*(P*). Proposition 2. { .v) = C(P), where P 
results from c, misstating its preferences, so no stable matching procedure makes it a 
dominant strategy for each college to state its true preferences. 
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choice students, and gives colleges c2 and c3 each their second choice 
student. 

Consider now the feasible outcome y such that v(cl) = {s2, sq}, 
y(c*) = {si}, and y(c3) = {s3}. The outcome y gives colleges c2 and c3 each 
their first choice student, so they both strictly prefer it to x*(P*). Let us 
now examine college ci, which is assigned its 3rd and 4th choice students 
at x*(P*) and its 2nd and 4th choice students at y. Since college c has 
responsive preferences, it strictly prefers y to x*(P). Thus every college 
strictly prefers y to x*(P*). This completes the demonstration that the con- 
clusion of Theorem 3 is false in the college admissions problem when 
colleges have responsive preferences over outcomes. 

The next section is devoted to discussing these matters with the 
additional precision that will be needed in order to properly consider the 
incentives facing the agents in the noncooperative game that arises when 
any stable matching procedure is adopted. It will be shown that when 
colleges have responsive preferences, the conclusion of Theorem 5 is also 
false; in fact there do not exist any stable matching procedures that make it 
a dominant strategy for colleges to state their true preferences. 

4. THE COLLEGE ADMISSIONS PROBLEM REVISITED 

In this section we will consider a specification of the college admissions 
problem in which all agents (both colleges and students) will have preferen- 
ces over all possible outcomes. Only with such a specification can the 
problem be formulated as a well defined game. 

As in the previous section, let there be two disjoint sets of agents C and 
S, with each ci in C having a quota of qi and a strict preference relation 
P(c,) on Su {u}, and each sj in S having a strict preference relation P(sj) 
on Cu {u>. Denote the vector of such preferences by P= (P(cl),...,P(c,), 
P(sl),..., P(s,)). An outcome x, an individually rational outcome, a stable 
outcome, and the set C(P) of stable outcomes, are all defined precisely as 
before. 

In addition, each college ci has a preference relation P#(cJ on the set 
{x(ci) 1 x is an outcome} of feasible assignments the college could receive. 
(So colleges have preferences defined over entire “entering classes,” as well 
as over individual students.) The preferences of the agents over different 
outcomes x and y correspond precisely to their preferences over their own 
assignments at x and y; i.e., a college ci prefers x to y if and only if 
x(ci)P#(ci) I, and a student sj prefers x to y if and only if 
x(sj) P(sj) JJ(s~). Denote by P# the vector of preferences P# = (P”(c~),..., 
P#(c,), P(sl),..., P(s,)), which defines the preferences of the agents over all 
feasible outcomes. 
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Note that, since the college admissions problem reduces to the marriage 
problem in the special case that all qi= I, the conclusion of Theorem 4 
carries over immediately when we consider the (now we’d-de~ned) game 
that arises from the adoption of a stable matching procedure that acts on 
agents’ stated preferences. 

THEOREM 4%. There exists no stable matching procedure for the college 
admissions problem that makes it a dominant strategy, for al/ agents to state 
their true preferences. 

Theorem 4* follows immediately from Theorem 4 and the fact that the 
marriage problem is a special case of the college admissions problem, so 
that if no procedure exists that tills the requirements of the theorem for a 
special case, then certainly no procedure exists that fills the rcquircments 
for the general case. For the case of responsive preferences, we will see that 
Proposition 2 below considerably strengthens the conclusions of 
Theorem 4*. 

Let each college c’s preferences P# (c) over entering classes be responsive 
to its preferences P(c) over students as defined in Section 3.Note that many 
different responsive preference orderings P”(c) exist for any preference 
P(C), since, for example, responsiveness does not specify whether a college 
with a quota of 2 prefers to be assigned its 1st and 4th choice students 
instead of its 2nd and 3rd choice students. However, the preference order- 
ing P(c) over individual students can be derived from P”(c) by considering 
a college c,‘s preferences over assignments x(ci) containing no more than a 
single student (and qi- 1 copies of u). 

Et is now straightforward to verify that the set C’(P) of stable outcomes 
(which depends only on the vector p) is equal to the core defined by weak 
domination {see [IO]) of the cooperative game in which the preferences of 
the agents are given by the vector P #, and whose rules are that any college 
and student may be matched with each other if they both agree, but no 
college may agree to be matched with more t an its quota of students, no 
student may agree to be matched to more than one college, any student is 
free to remain unmatched, and any college is free to keep any of its 
positions unfilled. 

Now consider the noncooperative game that arises when a sta 
matching procedure is adopted; i.e., a procedure that, for any stated 
preferences P, produces an outcome x in C(P). Since the set C(P) of stable 
outcomes is entirely determined by P, we can consider stable matching 
procedures that work by asking each college c to state its preference order- 
ing P(C) over individual students, rather than stating its full preference 
P#(c) over groups of students. (Since P(c) is completely determined by 
$# (c), it can be thought of as a summary of the full preferences.) We can 
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therefore consider the noncooperative game in which the strategy set of 
each college c consists of all the possible strict preferences P(c) it might 
state, and similarly for each student. (The proposition below would be 
unchanged if we considered the game in which the strategy set for each 
college c was the set of all possible full preferences P@(c) it might state.) It 
is shown below that the conclusion of Theorem 5 does not generalize to the 
college admissions problem: if P* is the vector of true preferences (i.e., if, 
for each college c, P*(c) is the correct summary of college c’s true full 
preferences), then, no matter what stable matching procedure is employed, 
it is not a dominant strategy for each college c to state P*(c). 

PROPOSITION 2. When colleges have responsive preferences, the con- 
clusion of Theorem 5 is false for the college admissions problem: in fact no 
stable matching procedure exists that makes it a dominant strategy for each 
college to state its true preferences. 

The proof makes use of the same example used to prove Proposition 1. 

Proqf: Let the sets C and S of agents, the quotas, and the true preferen- 
ces P*, be those of the example used in the proof of Proposition 1 (see 
Table I). Then when all agents state their true preferences, the set C(P*) of 
stable outcomes contains a unique outcome, which is the outcome 
x = x*(P*) = y*(P*). Thus any stable matching procedure must select the 
outcome X, and so college c1 receives the assignment x(c,) = {sg, s,}; i.e., it 
is assigned its 3rd and 4th choice students. Suppose now that college c1 
were to state instead the (false) preference ordering P’(cl) given by 
s,P’(c,) s,P’(c,) uP’(c,) s1P’(c1)s3, and that all other agents were to state 
their true preferences, so that the vector of stated preferences is P’= 
(P’(cl), P*(c& P*(c3), P*(s~),..., P*(s4)). It is straightforward to verify that 
the set C(P’) of stable outcomes with respect to P’ also contains a unique 
outcome, which is the outcome y=x*(P’) = y*(P’) described in the proof 
of Proposition 1. Thus any stable matching procedure must select the out- 
come y. Since c1 thus receives the assignment JJ(C~) = (sZ, sq} which it 
prefers to x(ci) = (s3, s,}, it does better by stating P’(cl) than by stating its 
true preferences P*(c,). This completes the proof. 

Since the college admissions problem, unlike the marriage problem, is 
not symmetric between the two sides of the market, we also need to con- 
sider how things look from the student side of the market. For this, the 
related marriage problem constructed by Gale and Sotomayor (quoted 
above) will prove useful, since, unlike the colleges, the students retain their 
identity in the related problem, and so their preferences in the two 
problems are the same. This fact will make the proof of Theorem 3* and 
5*, given below, immediate. 
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THEOREM 3*. In the college admissions problem, there does not exist any 
outcome z that every student prefers to the S-optimal stable outcome y*; i.e., 
for no outcome z is it the case that z(s) P(s) y*(s) for ail s in S. wever the 
corresponding result does not hold for the C-optimal stabk outcome x* when 
colleges have responsive preferences. 

THEQREM 5*. The matching procedure that always yields the ~-~~~~~a~ 
stable outcome y*(P) for any stated preferences P makes it a dorni~a~~ 
strategy for every s in S to state his true preferences in the admissio~.~ 
problem. However, when colleges have responsive preferences, no stable 
matching procedure makes it a dominant strategy for every c in C to state its 
true preferences. 

The proof of the first parts of Theorems 3* and 5* is immediate from the 
similar results for the marriage problem, through the Gale and Sotomayor 
construction, while the last sentence of each of these two theorems is 
simply a restatement of Propositions 1 and 2. 

A final remark is in order about the Nash equilibria of the game arising 
from the adoption of some stable matching procedure such as one yielding 
the C-optimal stable outcome in terms of the stated preferences. In t 
marriage problem, since it is a dominant strategy for agents on one side of 
the market to state their true preferences, it is natural to study the Nash 
equilibria that arise when only the agents on the other side of the market 
misrepresent their preferences. It was shown in [7 and 23 (using slightly 
different formulations of the strategy sets of the agents) that these Nash 
equilibria result in outcomes that are stable with respect to the true 
preferences of the agents. In the college admissions problem, the situation 
is somewhat more complex, since a procedure yielding the C-optimal stable 
outcome does not make it a dominant strategy either for colleges or for 
students to state their true preferences. It should be noted, 
every individually rational outcome x, whether stable or not, can be 
achieved as a Nash equilibrium in which each agent states that he prefers 
only his assignment at x to being unmatched. 

In terms of the general theory of two-sided matching markets, the results 
presented here shed some new light on the family of markets of which the 
marriage problem, the college admissions problem, the labor markets 
studied in [S], and those studied in [S], are increasingly general exam 
While Theorems 1, 2, and 4 generalize to all of these models (see [S]) 
results presented here show that Theorems 3 and 5 do not generalize even 
to the college admissions problem, and hence not to the still more general 
models. This suggests that the existence of dominant-strategy stable 
procedures for one side of the market, exhibited in Theore 
intimately connected than might have been supposed wi 

642/36/2-l 
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exhibited in Theorem 2, of optimal stable outcomes for each side of the 
market. 
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