
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

R E S E A R C H  P A P E R  S E R I E S  
 

 

 
 
 
 
 
 
                                                                                                                              http://ssrn.com/abstract-1639613

 
 
 

Research Paper No. 2055 
 
 
 

      Efficient Intertemporal Allocation of Risk and Return 
 
 
 

Robert Wilson 
Eiichiro Kazumori 

 
 
 

April 2009 
 

 
 
 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



RESEARCH PAPER NO. 2055

Efficient Intertemporal Allocation of Risk and Return

Robert Wilson

Eiichiro Kazumori

April 2009

This work was partially funded by a U.S. National Science Foundation grant,

the Center for Advanced Research in Finance at the University of Tokyo,

the Frontier Project of the Japanese Ministry of Economics, Trade, and In-

dustry (Grant 07131), Grants-in-Aid for Scientific Research (Grants 208032

and 2053226) from the Japan Society for the Promotion of Science, and the

Nomura Foundation for Science and Technology.



1

ABSTRACT

Efficient allocation of a stochastic stream of financial income is characterized

by an explicit stochastic differential equation for the case that each agent

has stationary preferences and the probability law of the stochastic process is

known. The initial condition is affected by which efficient allocation is chosen,

but subsequent evolution is determined solely by agents’ impatience and risk

aversion.
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EFFICIENT INTERTEMPORAL ALLOCATION OF RISK AND RETURN

ROBERT WILSON AND EIICHIRO KAZUMORI

Abstract. Efficient allocation of a stochastic stream of financial income is characterized
by an explicit stochastic differential equation for the case that each agent has stationary

preferences and the probability law of the stochastic process is known. The initial condition

is affected by which efficient allocation is chosen, but subsequent evolution is determined

solely by agents’ impatience and risk aversion.

1. Introduction

We consider a financial contract that allocates a stochastic stream of income among several

agents. We assume that each agent has stationary preferences for income, but agents can

differ in impatience and risk aversion. Due to these differences, each agent can benefit from

trading his own income stream for a share of their aggregate income stream. We study

a contract that is efficient, i.e. Pareto optimal among the agents, by combining previous

analyses by Gollier and Zeckhauser [3, 2005] and Wilson [5, 1968].1

We characterize an efficient contract by a stochastic differential equation. This equation

specifies how the allocation among agents evolves as the path of aggregate income is realized

with the passage of time. The allocation has a simple property — after an initial division of

the gains from trade, the evolution of the allocation is determined solely by agents’ aversions

to delay and risk.

The main ideas are exposited initially without addressing the technical aspects of stochas-

tic processes. Section 2 sets up the formulation, and Section 3 illustrates some special cases.

Date: April 2009. This is an interim report on an ongoing project. Copies can be downloaded from
gsbapps.stanford.edu/researchpapers/library/RP2055.pdf.

Key words and phrases. finance, contract, efficient allocation, risk aversion, impatience, stochastic differ-
ential equation.
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and the Nomura Foundation for Science and Technology.

1See also Becker [1, 1980]. Wilson [5] considers also the case that agents have differing probability
assessments about the aggregate income stream, but we omit this extension here. We do not here examine
other extensions to cases involving private information and/or learning, imperfect observability, moral hazard,
or investments undertaken during the contract.
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Then Section 4 states the main result and sketches the proof, which is then completed with a

formal treatment in Section 5. Section 6 describes implementation as a market equilibrium.

2. Formulation

We begin by stating our maintained assumptions.

A contract applies to a time interval T = {t ∣ t∗ ⩽ t ⩽ t∗} ⊂ ℝ, where time is continuous

and t∗ < t∗.2 Over this interval, aggregate income evolves as a stochastic process according

to a known probability law.3 Let Y(t) be the set of possible realizations of aggregate income

at time t, and assume that Y : T ↠ ℝ is a continuous correspondence whose images are

intervals. Denote its graph by Gr(Y) and the interior by Gr∘(Y). A realized path of aggregate

income is denoted Y = (y(t))t∗⩽t⩽t∗ , where y(t) ∈ Y(t) is the aggregate income realized at

time t. A partial history up to time t is denoted ỹ(t), i.e. ỹ(t) = (y(¿))t∗⩽¿⩽t.

There are N agents denoted by i = 1, . . . , N . Each agent i’s instantaneous utility for

income is at every time the same function ui : Ai → ℝ that is strictly increasing, strictly

concave, and twice differentiable on an open interval Ai = (ai,∞) ⊂ ℝ. In particular, his

risk tolerance ci(x) = −u′
i(x)/u

′′
i (x) is positive. We assume that ui(x) ↓ −∞ as x ↓ ai,

and if ai ∕= −∞ then his risk tolerance ci(x) ↓ 0 as x ↓ ai. To ensure existence of feasible

allocations, assume that
∑

i ai < y(t) for every possible realization y(t) of aggregate income

at every time t ∈ T .

Agent i’s realized utility Ui(Xi) for a Lebesgue measurable income streamXi = (xi(t))t∗⩽t⩽t∗

is obtained by discounting, and thus has the form

Ui(Xi) =

∫ t∗

t∗
e−Ri(t)ui(xi(t)) dt .

Assume that each instantaneous impatience parameter Ri(t) is positive and the function

Ri : T → ℝ is differentiable with derivative ri(t) = R′
i(t).

A contract specifies for each time t and partial history ỹ(t), an allocation x(t) = (xi(t))i=1,...,N ∈
ℝN of the current aggregate income y(t) among the agents. Feasibility requires

∑
i xi(t) =

y(t). Moreover, the allocation at time t must be the same for any two realizations Y, Y ′ of

aggregate income with the same partial history ỹ(t) = ỹ′(t). Thus a contract is characterized

by agents’ realized income streams (Xi)i=1,...,N for each possible realization Y of the stream

of aggregate income, and the set of feasible contracts comprises those for which each Xi is

measurable with respect to partial histories, each xi(t) ∈ Ai, and
∑

i xi(t) = y(t) at each

time t for each partial history ỹ(t).

2In general the terminal time t∗ might be infinite or random but here we assume it is fixed and finite.
3Appendix A states technical assumptions about this stochastic process.
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A contract is efficient if there exist positive welfare weights (wi)i=1,...,N such that it maxi-

mizes the weighted aggregate expected welfare
∑

i wiE[Ui(Xi)] among all feasible contracts,

where E[⋅] indicates expectation with respect to the probability distribution of streams of

aggregate income.

3. Two Special Cases

To introduce the main result proved in Section 5, we first review two special cases addressed

in [3, 5].

3.1. Static Allocation of Aggregate Income. A familiar property of static models of risk

sharing is that each agent obtains a marginal share that is proportional to his risk tolerance

[5]. We sketch here how one obtains this same result when agents have the same impatience,

say ri = r̄. In this case it suffices to consider each time t ∈ T separately.

Regardless of prior history, an efficient contract chooses an allocation x(y) of each realized

aggregate income y ∈ Y(t) at time t that maximizes
∑

i wiE[ui(xi(y))] subject to each

xi(y) ∈ Ai and
∑

i xi(y) = y for every possible realization y of current income. If the

constraint xi(y) ∈ Ai is not binding then the necessary and sufficient condition for this

maximization is that, for each aggregate income y, wiu
′
i(xi(y)) is the same for every agent i.

If the efficient allocation is differentiable then this condition implies that for some function

º : Y→ ℝ that is the same for all i,

º(y) = − d

dy
ln[wiu

′
i(xi(y))] = ci(xi(y))

−1 d

dy
xi(y)

for all i. Therefore º(y)
∑

i ci(xi(y)) =
∑

i
d
dy
xi(y) = 1 so

d

dy
xi(y) =

ci(xi(y)∑
j cj(xj(y))

.

In the notation of stochastic calculus, this is customarily written as

dxi(y) =

[
ci(xi(y)∑
j cj(xj(y))

]
⋅ dy .

Example 1: If each agent i’s utility is exponential with constant risk tolerance ci then

xi(y) = x∗
i + siy where si = ci/

∑
j

cj

and only x∗
i depends on the welfare weights.
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Example 2: If each agent i’s utility is logarithmic with risk tolerance ci(x) = x− ai then

d ln[xi(y)− ai] = d ln[y − ā] where ā =
∑
i

ai .

3.2. Pure Intertemporal Allocation. A second special case occurs when aggregate in-

come is constant, say y(t) = ȳ at every time t. In this case the only motive for the contract

is to obtain gains from trade due to differences among agents’ impatience, as studied by

Gollier and Zeckhauser [3].

For simplicity, assume that Ri(t) = rit. Then a contract x : T → ℝN is efficient if it

maximizes
∑
i

wi

∫ t∗

t∗
e−ritui(xi(t)) dt ,

subject to the feasibility constraints that
∑

i xi(t) = ȳ for all t ∈ T . The necessary and

sufficient condition is that wie
−ritu′

i(xi(t)) is the same for every agent i. As in the previous

case, if the allocation is differentiable then this condition implies that for some function

¹ : T → ℝ that is the same for all i,

¹(t) = − d

dt
ln[wie

−ritu′
i(xi(t))] = ri + ci(xi(t))

−1 d

dt
xi(t)

for all i. Therefore, since
∑

i
d
dt
xi(t) = 0,

¹(t)
∑
i

ci(xi(t)) =
∑
i

rici(xi(t)) ,

so
d

dt
xi(t) = ci(xi(t))[r̄ − ri] where r̄ ≡

∑
i rici(xi(t)∑
i ci(xi(t))

.

In the notation of stochastic calculus, this is customarily written as

dxi(t) =

[
ci(xi(t))[r̄ − ri]

]
⋅ dt .

Example 3: If each agent i’s utility is exponential with constant risk tolerance ci then

xi(t) = xi(t∗) + ci[r̄ − ri][t− t∗] where r̄ =

∑
i ciri∑
i ci

and only xi(t∗) depends on the welfare weights.

Example 4: If each agent i’s utility is logarithmic with risk tolerance ci(x) = x− ai then

d ln[xi(t)− ai] = [r̄ − ri] ⋅ dt ,
ln(xi(t)− ai) = [r̄ − ri][t− t∗] + ln(xi(t∗)− ai) ,
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where
∑

i xi(t∗) = ȳ.

3.3. Combinations of the Two Special Cases. Combining Examples 1 and 3, if agents’

risk tolerance coefficients ci are constants then also c̄, r̄, si are constants and therefore

xi(t, y(t)) = x̂i + ci[r̄ − ri][t− t∗] + siy(t) ,

where the initial allocation satisfies
∑

i x̂i = 0. In this case the induced risk tolerance of

each agent is c̄, and the induced interest rate of each agent is r̄, in the sense that for every

y(t) each agent i’s instantaneous discounted utility conditional on an efficient allocation is

e−ritui(xi(t, y(t))) = ∣ui(x̂i)∣ × e−r̄tū(y(t)) ,

where ū has the constant risk tolerance c̄, and only the scale factors ∣ui(x̂i)∣ reflect the welfare
weights used to determine a specific allocation.

Combining Examples 2 and 4, if each ui(x) = log(x − ai) then ci(x) = x − ai and the

formula for increments can be written as

dui(xi(t, y(t))) = [r̄ − ri] ⋅ dt+ dū(y(t)) ,

where ū(y) = log(y − ā) and ā =
∑

i ai.

4. A Candidate Solution

In this section we address the general case specified in Section 2 and derive a candidate

for an efficient contract. Section 5 then establishes that this candidate contract is indeed

efficient.

We derive the candidate contract by assuming that it is described by a function x :

Gr(Y) → A that to each time t and possible aggregate income y ∈ Y(t) assigns an allocation

x(t, y) ∈ A, where A =
∏

iAi ⊂ ℝN . Moreover, we assume that x is a differentiable function

on Gr∘(Y).
We use the following notation. For each agent i,

c̄(t, y) =
∑
i

ci(xi(t, y))

si(t, y) = ci(xi(t, y))/c̄(t, y)

r̄(t, y) =
∑
i

ri(t)si(t, y) .

We omit arguments of these functions in the sequel. Note that c̄ measures aggregate risk

tolerance, si is agent i’s share of aggregate risk tolerance, and r̄ is the weighted-average

impatience using agents’ shares si as weights.
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Proposition 4.1. If x is the allocation rule for an efficient contract then on Gr∘(Y) each

agent i’s allocation satisfies the stochastic differential equation

dxi = ci[r̄ − ri] ⋅ dt+ si ⋅ dy
.

Sketch of proof. An efficient contract maximizes

∑
i

wiE

[ ∫ t∗

t∗
e−Ri(t)ui(xi(t, y(t))) dt

]
,

for some positive welfare weights (wi)i=1,...,N , subject to measurability with respect to partial

histories and the feasibility constraints

(∀ (t, y) ∈ Gr(Y)) xi(t, y) ∈ Ai and
∑
i

xi(t, y) = y .

Because the maximand is additively separable across times and realizations, this maximiza-

tion can be done pointwise.4 If x is a maximizer then there exists a Lagrange multiplier

¸(t, y) on the feasibility constraint such that for a.e. (t, y) ∈ Gr∘(Y)

wie
−Ri(t)u′

i(xi(t, y)) = ¸(t, y) ,

or equivalently, wie
−Ri(t)u′

i(xi(t, y)) is the same for every agent i. We show that this condition

implies that on Gr∘(Y)

∂

∂t
xi = ci[r̄ − ri] and

∂

∂y
xi = si ,

and therefore

dxi ≡ ∂

∂t
xi(t, y) ⋅ dt+ ∂

∂y
xi(t, y) ⋅ dy

= ci[r̄ − ri] ⋅ dt+ si ⋅ dy ,
which is the stochastic differential equation stated in the proposition.

Because wie
−Ri(t)u′

i(xi(t, y)) is the same for all i, there exist functions ¹, º : Gr∘(Y) → ℝ
such that

¹(t, y) = − ∂

∂t
ln(wie

−Ri(t)u′
i(xi(t, y))) = ri + c−1

i

∂

∂t
xi

º(t, y) = − ∂

∂y
ln(wie

−Ri(t)u′
i(xi(t, y))) = c−1

i

∂

∂y
xi .

4See Section 5 for elaboration.
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Now the feasibility constraints imply that

∑
i

∂

∂t
xi = 0, so ¹ =

∑
i rici∑
i ci

∑
i

∂

∂y
xi = 1, so º =

1∑
i ci

,

and therefore

∂

∂t
xi = ci[r̄ − ri] and

∂

∂y
xi = si ,

where r̄ = ¹ and si = ciº as required. □

5. Validation of the Stochastic Differential Equation

This section provides further technical details that verify that the candidate solution in

Section 4 is actually an optimal solution, and validates its interpretation as a stochastic

differential equation.

Let (Ω,ℱ ,{ℱt}t∗⩽t⩽t∗ ,P) be a filtered complete probability space satisfying the usual con-

ditions. Assume that the set {Y } = {y(t)t∗⩽t⩽t∗} of realizations of aggregate income streams

is an {ℱt}-adapted process, i.e. {y(t)t∗⩽t} is measurable with respect to ℱt. Thus P induces

a probability law for the stochastic process that generates streams of aggregate income.

In general, a contract specifies the agents’ consumption process X = {xi(t, !)}t∗⩽t⩽t∗
i=1,...,N

subject to the feasibility condition that X ∈ X (Y ) for each realization Y of the aggregate

income stream, where X (Y ) is the set of consumption streams for which each allocation

x : [t∗, t∗] × Ω → ℝN is measurable and {ℱt}-adapted, and for each time t and state !,∑N
i=1 xi(t, !) = y(t, !), where y(t, !) ∈ Y(t) is the realization of aggregate income at time t.

If the contract specifies the consumption process X then the realized social welfare is

W (X,!) =
N∑
i=1

wi

∫ t∗

t∗
e−Ri(t)ui(xi(t, !)) dt ,

if the state is !. Denote expected welfare conditional on the aggregate income stream by

W (X, Y ) = E[W (X,!)∣Y ], and by W (X) = E[W (X,!)] overall.

We proceed as follows. First we formulate a relaxed problem for which it is assumed

that an omniscient contract designer knows the realization of the state ! ∈ Ω, and thus the

realization of the aggregate income stream Y . We derive a Bellman equation for the relaxed

problem. Then we observe that the solution of the relaxed problem does not depend on the

state, so the solution is optimal even when the designer does not know the state.
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Now suppose the designer knows the state ! and thus the realization Y of the aggregate

income stream. Then conditional on the state ! the designer’s problem is to maximize

W (X, Y ) subject to X ∈ X (Y ), where now each xi(t, !) is conditioned on the known state

!. For each time s ∈ [t∗, t∗] let Xs and Ys be the consumption and income streams from time

s onward, and let Xs(Ys) be those consumption streams that satisfy the feasibility constraints

from time s onward. Then welfare from time s onward is

Ws(Xs, Ys) =
N∑
i=1

wiE[

∫ t∗

s

e−Ri(t)ui(xi(t, !)) dt∣Ys] .

Define the value function

Vs(Ys) = sup
Xs∈Xs(Ys)

Ws(Xs, Ys) .

Since ui is uniformly continuous, the stochastic version of the Principle of Optimality holds.5

That is, for any t∗ ⩽ s ⩽ ŝ ⩽ t∗,

Vs(Ys) = sup
x(t,!)s⩽t⩽ŝ∈Xs(Ys,[s,ŝ])

N∑
i=1

wiE[

∫ ŝ

s

e−Ri(t)ui(xi(t, !)) dt∣Ys] + Vŝ(Yŝ) ,

where Xs(Ys, [s, ŝ]) is the projection of Xs(Ys) to the initial time interval [s, ŝ]. Furthermore,

if xi(t, !)s⩽t⩽t∗ solves the problem from time s on, then

Vs(Ys) =
N∑
i=1

wiE[

∫ t∗

s

e−Ri(t)ui(xi(t, !)) dt∣Ys] .

Because prior consumption x(s, !)t∗⩽s<t does not affect future welfare nor the subsequent

evolution of aggregate income, we have a following candidate for the solution x∗(t, !)s⩽t⩽ŝ

of the relaxed problem. For each t ∈ [s, ŝ]

x∗(t, !) ∈ argmax
N∑
i=1

wie
−Ri(t)ui(xi(t, !)) subject to

N∑
i=1

xi(t, !) = y(t, !) .

Since ui is strictly concave and twice differentiable, and also ui(x) ↓ −∞ as x ↓ ai and if

ai ∕= −∞ then ci(x) ↓ 0 as x ↓ ai, the candidate solution x∗(t, !) exists and is in
∏

Ai.

We now check that x∗(t, !)s⩽t⩽ŝ solves the Bellman equation. Clearly x∗(t, !)s⩽t⩽ŝ satisfies

the measurability constraint and the allocation constraint, so it is in Xs(Ys, [s, ŝ]). Suppose

it is not optimal and there exists x′(t, !)s⩽t⩽ŝ that gives a strictly higher value. Since Vŝ(Yŝ)

5Krylov [4, 2009] and Fleming and Soner [2, 2005].
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is independent of x(t, !)s⩽t<ŝ, this implies that

N∑
i=1

wiE[

∫ ŝ

s

e−Ri(t)ui(x
′
i(t, !)) dt∣Ys] >

N∑
i=1

wiE[

∫ ŝ

s

e−Ri(t)ui(x
∗
i (t, !)) dt∣Ys] .

By taking ŝ ↓ s, this implies that

N∑
i=1

wiE[e−Ri(s)ui(x
′
i(s, !))∣Ys] >

N∑
i=1

wiE[e−Ri(s)ui(x
∗
i (s, !))∣Ys] ,

which contradicts the definition of x∗(s, !). Similarly, one verifies that x∗(t, !)t∗⩽t⩽t∗ is an

optimal policy for the relaxed problem.

It remains to show that x∗ is indeed a solution of the problem where the designer does

not know the realization of the state !. For that purpose note that, since the solution

x∗(t, !)t∗⩽t⩽t∗ depends only on {y(t, !)}t∗⩽t⩽t∗ and does not depend on the state ! more than

it depends on the realized aggregate income stream {y(t, !)}t∗⩽t⩽t∗ , the designer does not

require knowledge of the state ! to implement the solution. Therefore, an efficient contract

is the allocation x∘(t, y)t∗⩽t⩽t∗ that for each time t and aggregate income y is obtained as

the optimal allocation x∗(t, !)t∗⩽t⩽t∗ that is the same for each state ! for which y(t, !) is the

realized aggregate income y.

6. Implementation via a Market

We conclude by showing that each efficient allocation can be supported by an Arrow-

Debreu equilibrium where agents can trade arbitrary future payoff streams at the initial

date to achieve the given allocation.

We consider a pure exchange economy for a single consumption good. Assume that there

exists a market where shares of aggregate income are traded. Holding one share of the stock

from t = t∗ to t = t∗ yields a payoff at rate y(t) at time t. Assume further that there exists

a money market in which a locally risk-free security can be traded. Let p(t) be the price of

the stock (ex-dividend) and let r(t) be the risk-free interest rate at time t.

There areN agents denoted by i = 1, . . . , N . Each agent trades competitively in the money

and securities markets and consumes the proceeds. Let xi(t) be agent i’s consumption rate

at time t, let ai(t) be his holdings of the risk-free asset, and let µi(t) be his holdings of the

stock. Assume that the consumption and trading strategies {xi(t), ai(t), µi(t)} are adapted

processes with the standard integrability conditions:

∫ t∗

t∗
xi(t)

2 dt < ∞,

∫ t∗

t∗
∣ai(t)r(t) dt+ µi(t)(y(t) dt+ dp(t))∣ < ∞,

∫ t∗

t∗
µi(t)

2d[p(t)] < ∞
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where [p(t)] is the quadratic variation process of p(t). Each agent’s wealth process is Wi(t) =

ai(t) + µi(t)p(t). Wi(t) follows a stochastic differential equation

dWi(t) = ai(t)r(t) dt+ µi(t)(y(t) dt+ dp(t))− xi(t) dt .

To exclude arbitrage opportunities, assume that Wi(t) must be positive with probability 1.

Agent i chooses his consumption and trading strategy {xi(t), ai(t), µi(t)} to maximize his

expected utility
∫ t∗

t∗
e−Ri(t)ui(xi(t)) dt

where the instantaneous utility is strictly increasing, strictly concave, and twice differentiable

on an open interval Ai = (ai,∞).

A competitive equilibrium of the economy is a pair of price processes {p, r} and agents’

consumption-trading strategies {xi(t), ai(t), µi(t)}i=1,...,N such that {xi(t), ai(t), µi(t)} maxi-

mizes the expected utility

E[

∫ t∗

t∗
e−Ri(t)ui(xi(t)) dt]

subject at every time t to

dWi(t) = ai(t)r(t) dt+ µi(t)(y(t) dt+ dp(t))− xi(t) dt,

and markets clear:
N∑
i=1

µi(t) = 1,
N∑
i=1

ai(t) = 0 .

To derive an equilibrium one first derives the efficient allocation of the economy when a

designer computes the optimal sharing rules. This is done as in Proposition 4.1 and Section

5. For any efficient allocation, an Arrow-Debreu equilibrium can be derived that supports

the allocation. In an Arrow-Debreu equilibrium, agents trade arbitrary payoff streams at

the initial date. The equilibrium is defined by the pricing function {Át∗(s), t∗ ⩽ s ⩽ t}
such that the price of an arbitrary payoff stream {x(s), t∗ ⩽ s ⩽ t} at t = t∗ is given by

the linear functional Φt∗(x) = Et∗ [
∫ t∗

t∗
Át∗(s)x(s) ds], and the market clears. By the second

welfare theorem, one knows that for each w and the corresponding efficient allocation x∗
i (t),

there exists an Arrow-Debreu equilibrium that leads to the same allocation.

In general, Át∗(s) can depend on t∗ and the whole time path of Y up to time s, which gives

the relevant description of the underlying state of the economy at time s. In the current

setting, however, due to time-additive and state-separable preferences of the agents, Át∗(s)
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depends only on w, y(t∗), and (s, y(s)). Thus the Arrow-Debreu price of a payoff stream

x(s)t∗⩽s⩽t up to any time t is given by Φt∗(x) = E[
∫ t

t∗
Át∗(s)x(s) ds].
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