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Abstract: For each two-player game, a linear-programming algorithm finds a

component of the Nash equilibria and a subset of its perfect equilibria that are

simply stable: there are nearby equilibria for each nearby game that perturbs one

strategy’s probability or payoff more than others.
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Kohlberg and Mertens (1986) propose a refinement of Nash equilibria called stability.

Basically, a set of equilibria is stable if every game nearby has equilibria nearby. They

study several specifications of the neighborhood of a game and select the smallest for their

definition; Mertens (1989, 1991) and Hillas (1990) study essentially stronger refinements.

In this article we use a different, essentially smaller, neighborhood and therefore a weaker

refinement called simple stability. A practical advantage of this refinement is that it

enables an elementary procedure for computing a simply-stable set of equilibria of a

two-player game.

A set of perfect equilibria within a single connected component is simply stable if

each game obtained by perturbing some strategy’s payoff or minimal probability has

equilibria near this set. This criterion is weaker in that it considers only perturbations

of pure strategies, rather than mixed strategies as in Kohlberg and Mertens. It is also

mildly stronger in that it confines the set to perfect equilibria in a single component, and

it allows perturbations of both probabilities and payoffs.2 These features reflect partially

1 NSF grants SES 8908269 and 9207850 provided financial support and Faruk Gul
provided intellectual support. An STSC APL II version of the computer program is
available from the author, and a faster C version has been prepared for the game solver
Gambit by McKelvey (1990).

2 As in Kohlberg and Mertens, perturbing a strategy’s minimal probability perturbs
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the motivations for Mertens’ and Hillas’ refinements.

We describe a numerical algorithm that constructs a simply-stable set comprising at

most 2n extreme points of some component, where n is the number of pure strategies.

Jansen, Jurg, and Borm (1990) for two-player games, and Mertens (1989) for N -player

games, demonstrate that the task is finite in principle using a form of enumeration,

even for Mertens’ stronger definition (Hillas’ seems unsuited to finite computation). Our

contribution is an efficient algorithm based on standard methods and software of linear

programming, as adapted to the calculation of equilibria of two-player games and other

linear complementarity problems by Lemke and Howson (1964).

Kohlberg and Mertens (1986) and Kohlberg (1990) elaborate the economic signifi-

cance of stability in terms of properties motivated by axiomatic considerations. They

provide many examples and other authors have studied the application of stability cri-

teria or its derivative properties to various economic contexts.3 Studies of more realistic

problems require an efficient algorithm. An algorithm is also essential for empirical

studies of the many game-theoretic models developed to study imperfectly competitive

markets (these models typically invoke refinements, although often weaker ones such as

perfection). For instance, maximum-likelihood estimation of the parameters of a strategic

model, and related hypothesis testing, require calculation of the equilibrium outcome for

each parameter specification: Bresnahan and Reiss (1991) develop the statistical method-

ology of this approach to empirical studies.

After a review of the topic in x1, Part I explains the algorithm in geometric terms,

emphasizing the main ideas. Part II presents an algebraic construction and a combina-

torial proof that the algorithm works.

other players’ payoffs from all their strategies, whereas perturbing its payoff gives its
player a bonus for using that strategy. Thus, like stability, simple stability weakens
hyperstability, which considers all payoff perturbations, by considering a restricted set of
perturbations. If a game has only pure strategies (e.g., all mixed strategies are represented
explicitly as pure strategies) then simple stability implies stability.

3 Van Damme (1989) provides a critique of the ‘forward induction’ property of sta-
ble sets. Economic applications are studied by Bagwell and Ramey (1990), Banks and
Sobel (1987), Cho and Kreps (1987), Cho and Sobel (1990), Glazer and Weiss (1990), Os-
borne (1990), and Ponssard (1991) — among many others. Stability is used also to refine
Walrasian equilibria of economic models with features such as signaling and screening;
cf. Gale (1992).
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1. Introduction

A subset of a game’s equilibria is stable only if each nearby game has equilibria near

this subset. Kohlberg and Mertens’ (1986) definition actually reserves ‘stable’ for a min-

imal closed subset with this property. Moreover, to reduce the size of stable sets, they

restrict the neighborhood of nearby games to only those payoff perturbations induced

by perturbing the lower bounds on players’ mixed strategies. They show that stable sets

exist and at least one lies within a single component. They also verify other desirable

properties:

� Invariance: a stable set depends only on the minimal nonredundant description of
the game, called the reduced normal form.

� Admissibility: no equilibrium in a minimal stable set uses a weakly-dominated
strategy.

� Forward Induction: a stable set contains a stable set of the game obtained by deleting
a strategy that is weakly dominated or strictly inferior at all equilibria in the set.

Unfortunately, their definition allows a stable set to span multiple components. Identify-

ing a stable set within a single component is desirable in any case because all equilibria

in the same component of a generic extensive game have the same equilibrium path and

therefore the same outcomes; i.e., these equilibria differ only off the unique equilibrium

path. For a generic game, therefore, a single-component stable set’s equilibrium path

and its outcome are ‘stable’ too. Uniqueness of this sort is essential for empirical studies

— though more than one component can be stable.

Mertens (1989, 1991) adopts a revised definition that enforces connectedness and,

partly as a result, gets the further property of Backward Induction: each stable set con-

tains a proper (and therefore perfect) equilibrium. His definition is couched in terms of

homology theory so we do not repeat it here; but for two-player games a necessary (and

nearly sufficient) condition that a component is stable is again that each perturbed game

has equilibria nearby.4

4 For the two-player games addressed here, all computations are linear, which allows
bypassing some aspects of Mertens’ definition; also, for simplicity we apply the definition
to stable components, not smaller connected sets. With these provisos, Mertens’ definition
says essentially that a component is stable if the projection from a neighborhood of the
component to a neighborhood of the game is homologically nontrivial. Mertens (1986)
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For expository purposes, Parts I and II develop the algorithm in two stages. The first

stage (x2 and x5) reviews the setup and the Lemke-Howson (LH) algorithm for finding an

equilibrium of a generic two-player normal-form game. It also describes the amendments

that enable the algorithm to find perfect equilibria of nongeneric normal-form games: this

is important because nontrivial extensive games, even generic ones, have nongeneric

normal forms. Some examples in x3 motivate the subsequent presentation. The second

stage (x4 and x6) shows how the LH algorithm can be applied repeatedly to find a

component and a subset of its vertices that are simply stable.

The gist is the following. Like the LH algorithm, ours follows paths on which at

most one pure strategy is used (i.e., with positive probability) without being optimal,

and another’s probability or payoff is perturbed. Geometrically, each path is a one-

dimensional locus connecting vertices of best-reply regions along adjacent edges. It

begins at a specified starting point and terminates at a vertex of some component. Each

path is generated by the plausible rule of parametrically increasing the probability of a

newly optimal strategy, or decreasing the profitability of a newly unused strategy, until

an equilibrium is reached; cf. Wilson (1972). This rule is implemented by numerical

operations on a tableau of detached coefficients as in linear programming.

To this we add a step applied when the LH algorithm terminates at a vertex that is

not a strict equilibrium, and therefore not stable as a singleton set. A new perturbation

is invoked to transit onto an alternative path, enabling continuation to another vertex. If

a path starts to exit prematurely from a component then this step is applied in reverse

to move to a vertex that terminates a path with a previous perturbation; these reversals

enable the algorithm to follow folds in the graph of equilibria.

The perturbations that guide the paths reflect the motivation for stability as a re-

finement; viz., to be stable an equilibrium outcome must be affected slightly by small

probabilities of deviant behaviors. Although the algorithm generally allows any generic

perturbations as guides, for simple stability we use only 2n different guides, each lying

shows that this definition implies the necessity of the condition stated in the text; i.e.,
the projection is onto, so no region is left uncovered. This setup allows a large family
of definitions depending on the homology theory used and the normalizations allowed,
but he shows that these definitions are essentially equivalent. Mertens (1987) shows that
applying a minimality requirement would violate the desirable property that the solution
depends only on the ordinal properties of players’ preferences.
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in a different corner of a simplex of n probability and n payoff perturbations generat-

ing a neighborhood of the original game. In particular, each corner perturbation has an

equilibrium near the component’s vertex that is the terminus of the path guided by this

perturbation — one says that this vertex ‘covers’ the perturbation. Coincidentally, using

these perturbations assures that the algorithm generates only perfect equilibria.

The sequence of paths is called a route. From a specified starting point, a route

follows a path to a vertex in some component. A route’s subsequent paths within each

component proceed around a ‘great circle’ of its vertices and their connecting edges.5

The route exits onto another path to a new component if the sequence of covered per-

turbations doubles back on itself: this event reveals that the graph of equilibria has a

fold that (presumably, but not surely) leaves some perturbations uncovered. In any case,

each route surely terminates with vertices forming a simply-stable set. The signal for

termination is that all corners are covered by the vertices encountered in the current

component. Although this stopping rule assures finite termination, the vertices need not

be a stable set because coverage of only the 2n corners (and incidentally 2n � 1 edges

traversed enroute) is verified; e.g., interior perturbations are not checked explicitly. One

could use additional guides (such as perturbations of mixed strategies) to verify stronger

variants of simple stability, but we do not pursue that task here.

Part I: Construction of Stable Sets

2. Review of the Lemke-Howson Algorithm

As mentioned, our algorithm uses the LH algorithm repeatedly as a ‘subroutine’. Its

operation can be explained in geometric terms by considering the following example,

which represents a generic normal-form game.6

Suppose a player has three pure strategies. Then the mixed strategies can be repre-

sented as points in a triangular simplex, as in Figure 1. The three extreme points identify

5 The algorithm is designed purposely not to examine all vertices, since their number
can be enormous. The situation is like the difference between the lengths of a circular
orbit around the earth, and a flight over every city.

6 The terms ‘generic normal-form’ in game-theoretic lingo and ‘nondegenerate’ in
linear-programming lingo are essentially equivalent.
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the pure strategies and a point in a face or the interior identifies the corresponding mix-

ture of pure strategies of which it is a convex combination. Each vertex is marked by a

circled letter that is the name of the pure strategy. The face opposite the vertex is labeled

by the same letter to indicate that all the points on the face are mixed strategies not using

that strategy; i.e., its probability is zero there.

The example shown in Figure 2 displays two simplices, one for player 1 with pure

strategies a, b, and c, and one for player 2 with pure strategies d, e, and f . Further,

the interior of each simplex is divided into regions: each region is labeled by the name

of the pure strategy of the other player that is his best reply to any mixed strategy in

the region. On the boundary between two or more best-reply regions, the best replies

include all the best replies in adjacent regions: consequently, imagine that each edge or

point bears the labels of its adjacent best-reply regions, as well as the labels of any pure

strategies unused there.

For practical purposes this is a complete description of the game. To see this, recall

that an equilibrium is a pair of strategies, one for each player, such that each pure strategy

is used only if it is a best reply to the other’s strategy. This is the same as saying that an

equilibrium is a pair of points, one in each simplex, that is completely labeled: between

them they bear all labels a; . . . ; f . For, if the point in a pure strategy’s own simplex does

not have its label then it is used, so it must be a best reply to the other’s strategy, and

therefore the point in the other simplex must bear its label.

As indicated in Figure 2 by the two endpoints of the dashed curve between the tops

of the two simplices, the LH algorithm starts by assigning one player, say player 1, a

strategy that is pure, say a, and the other, player 2, the strategy d that is a best reply to a.

Thus, we start at a pair of pure strategies missing only label a — meaning that only a is

used without being a best reply. The algorithm then follows the locus of points missing

only label a, until it terminates at a pair with all labels, which is therefore an equilibrium.

This path consists of the following edges in Figure 2. We move first along edge 1: b is

an unused best reply at 2’s pure strategy d so we can increase the probability of using

b and still be missing only label a, but we must stop at the next vertex because going

further would lose label d. But now f is a best reply so in 2’s simplex we next traverse

edge 2 until continuing would lose label b, and c becomes a best reply. Continuing thus,
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Figure 1: Geometric representation of a player’s mixed strategies as a simplex with
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we follow edge 3 and then edge 4, whereupon a becomes a best reply and a completely

labeled pair is obtained, as indicated by the two endpoints of the lower dashed curve.

A locus of this kind, and each point on it, is said to be almost-completely labeled; in this

case, only label a is missing until the terminus is reached.

This procedure is entirely general. Start from a pair of pure strategies that is almost-

completely labeled, missing at most one label (say a). If this pair is not completely labeled

then following the incident locus of almost-completely labeled pairs finds a completely

labeled pair that is an equilibrium. The algorithm cannot cycle because at most one pair

of pure strategies is missing label a, and at the end of each edge one label becomes

newly duplicated, identifying a unique edge in the other simplex along which the locus

continues — or label a is obtained and an equilibrium is reached.

The path can be construed as a ‘homotopy’, as we now describe. We start with an

artificial game that is easy to solve, namely player 1 receives a large bonus for using

strategy a, in which case the pair (a; d) of pure strategies is indeed an equilibrium.

Tracing the equilibria as the bonus is reduced to zero (i.e., player 1 is weaned from

subsidy) amounts to following the locus of almost-completely labeled pairs until we

arrive at an equilibrium of the true game. This interpretation reveals, however, that the

graph of the locus may have folds, as shown for a hypothetical example in Figure 3 for

the case that a is a best reply at the terminus (alternatively the terminus can occur where

a’s probability drops to zero while the bonus is still positive). The fact that the graph

has only folds (if any) and no gaps, holes, or knots, is a general result established by

Kohlberg and Mertens (1986, Theorem 1).7

The LH algorithm allows a significant generalization. If we start at any other equilib-

rium then again we can move along the locus of pairs missing only label a (viz., the initial

segment moves away from whichever region bears label a at the equilibrium) to reach

another equilibrium. Thus the number of equilibria is odd: the equilibria are connected

7 Their theorem states that the projection from the graph of the equilibrium correspon-
dence to the space of games is homotopic to a homeomorphism. This means that the
graph can be stretched to eliminate folds without leaving holes. They use essentially the
space of bonuses to model the space of games, so the graph in Figure 3 illustrates their
result along a slice in which only the bonus for strategy a varies. They actually model
these spaces as spheres by adding a point at infinity: in Part II we proceed similarly by
including an ‘extraneous vertex’.
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Pr{a}

1

End

Bonus

Start

0

Graph of Equilibria Depending
On the Bonus for Strategy a

Figure 3: The path of the Lemke-Howson algorithm as a homotopy parameterized

by the bonus for strategy a.

in pairs via paths missing only label a, except for the unique equilibrium connected by

such a path to the unique pair of pure strategies missing at most label a. This can be

seen in Figure 3: for each bonus specifying a generic game the number of equilibria is

finite and odd.

Next we describe how the LH algorithm can be amended to handle nongeneric

games. In geometric terms, a game is nongeneric if an end of an edge provides multiple

choices for continuation; that is, one label is lost but two or more are acquired. This

kind of degeneracy can happen along a face where a strategy of 1 is unused if one of 2’s

best replies is optimal only when 2 is certain that 1 will not use this strategy. A more

complicated instance typical of extensive games is shown in the left panel of Figure 4,

where 2 is indifferent between d and e if 1 uses only a. The middle panel shows that
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this case can be handled by perturbing the probability of choosing b; i.e., this strategy

is forced to be used with at least a small positive probability, which moves inward the

face labeled b. This is called a primal perturbation. An alternative technique uses a

dual perturbation that gives 2 a small bonus for choosing e, as shown in the right panel.

In either case, the net effect is to assure that 2 has a unique best reply. In numerical

computations it is unnecessary to invoke perturbations of either kind: Part II describes

a unified lexicographic scheme that has the same effect.

Lastly we describe how, when the LH algorithm has reached a completely labeled

pair using one perturbation, this perturbation can be replaced by another to begin a new

path. We use primal perturbations to depict how this is done; dual perturbations are

analogous. The left panel of Figure 5 shows a vertex of 1’s mixed strategies that is part

of an equilibrium � in which strategies b and c are unused, d is a used best-reply of 2,

and e is an unused best reply. This equilibrium is consistent with the primal perturbation

in which b is perturbed more than c, as indicated by the dashed and dotted lines repre-

senting the larger and smaller perturbations. Altering this configuration by decreasing

b’s primal perturbation and increasing c’s can be envisioned as moving the dashed line

outward toward the boundary until the circled equilibrium hits the intersection between

the d and e best-reply regions, and then moving inward the dotted line, carrying the

equilibrium with it. The result is shown in the right panel, where now the dashed line

identifies c’s larger perturbation. This initiates a new path in which the missing label is b:

it is used (slightly) but not optimal. Now e is an unused best reply, so the path continues

by following the edge in the other player’s simplex that makes e a used strategy.

In sum: Paths of the LH algorithm depend on the missing label and the perturbation

or lexicographic scheme that resolves degeneracies. Each path’s starting and ending

points are completely labeled (and therefore equilibria), except one can be the unique

pair of almost-completely labeled pure strategies. At an equilibrium where an optimal

strategy is unused, one can transit onto a new path to another equilibrium by revising

the perturbation.

After these preliminaries, in the next section we introduce the notion of stability via

examples that illustrate the main ideas.
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The Game "Do The Right Thing"

Figure 6: The extensive game ‘Do The Right Thing’.

3. Examples of Stable Sets

The main example is the extensive game ‘Do The Right Thing’ shown in Figure 6. In this

game, player 1 moves first, choosing either strategy a yielding payoffs (3; 6) to players

1 and 2, or giving the next move to 2, who chooses either strategy d yielding payoffs

(4; 3), or chooses to play the simultaneous-move game with strategies b and c for 1 and

e and f for 2, with the payoffs shown in the square box. The players’ mixed strategies

are shown in Figure 7 along with their best-reply regions. As in most extensive games

there are degeneracies, at the two top vertices.

This game’s equilibria lie in two components. In the first component, player 1 uses

only a and 2 employs any mixed strategy in the best-reply region labeled a in the right

panel of Figure 7. In the second component, 2 uses only d and 1 employs any mixed

strategy in the best-reply region labeled d for which pure strategy a is unused (because
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Figure 7: Mixed strategies and best replies for ‘Do The Right Thing’. Vertices of

equilibrium components are labeled by the regions of dual perturbations

they cover in Figure 8. The numbered edges record part of a route of the

algorithm.
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a is not a best reply when 2 uses only d): this is the interval between the two points E

and F in the left panel. The unique proper equilibrium is d together with the midpoint

of the interval between E and F.

This game illustrates the main ideas: the first component is not stable and the way

it fails is indicative of the general case, whereas the second component is stable. We

use the four panels in Figure 8 to describe the test for stability: the two upper panels

refer to the first component, and the left and right panels pertain to primal and dual

perturbations. Initially we refer only to the left panels, and then repeat the analysis in a

dual form using the right panels.

Primal Stability

Although similar to the left panel of Figure 7, the upper-left panel of Figure 8 depicts the

nonnegative perturbations (�a; �b; �c) of the probabilities of 1’s pure strategies a, b, and

c. These are normalized so they sum to a small constant; thus, the simplex represents a

cross-section of the cone of nonnegative perturbations analogous to Figure 1. The side

labeled a is where �a = 0, indicating that 1’s pure strategy a has only the natural lower

bound 0 on the probability that it is used. Recall that the first component has 1 using

a and 2 adopting any mixed strategy for which a is a best reply. One vertex of this

component has 2 using e (in Figure 7 this is the vertex labeled AB, as explained later):

this pair obviously remains an equilibrium if the minimum probability �e of using e is

increased slightly, since e is already used with probability 1. This property is also true

‘approximately’ for perturbations �d and �f of 2’s strategies d and f , in the sense that

these perturbations move the vertex slightly and do not alter 1’s best reply a. It is also

true approximately for all perturbations of 1’s strategies in the unshaded triangle where

�b � 2�c along the left side of the upper-left panel. Again, a small perturbation with

�b > 0 or �c > 0 moves slightly the location of 1’s strategy from the vertex (in the left

panel of Figure 7) where a is used surely to a mixed strategy that respects the lower

bounds �b and �c on the probabilities with which b and c must be used, and if �b � 2�c

then e remains 2’s best reply. Similarly, the equilibrium where 2 uses f (the vertex

labeled CD in Figure 7) ‘covers’ all perturbations with �c � 2�b. The equilibria labeled

A and C in Figure 7 cover no additional perturbations: A covers again the unshaded

triangle on the left; and C, the one on the right — and other equilibria in this component
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cover lower-dimensional subsets of these.

The first component is unstable because of the existence of the shaded central triangle

in Figure 8’s upper-left panel. For any perturbation in this region, no equilibrium is close

to any equilibrium in this component. This can be seen in Figure 7 from the fact that

at the vertex where only a is used a perturbation with �b = �c makes d the only best

reply for 2, whereas a is not a best reply at the vertex where only d is used. The second

component has no such deficiency: the equilibria where 2 uses d and 1 uses one of the

mixed strategies E or F cover perturbations in corresponding regions labeled E and F in

the lower-left panel, and these regions include all perturbations.

Dual Stability

Dual stability is motivated by the observation that the effect on an equilibrium of perturb-

ing one player’s strategies can be mimicked by appropriate bonuses for the other player:

each strategy gets a bonus that offsets the risk represented by the other’s perturbation.

The upper-right panel depicts the simplex of 2’s nonnegative bonuses �d; �e; �f , nor-

malized to sum to a small constant; similarly, the lower-right panel depicts 1’s bonuses.

Note that an equal bonus for each of 2’s strategies (�d = �e = �f ) leaves that player’s

best replies unchanged: the barycenter of the dual-perturbation simplex represents a

strategically equivalent game so it is in every covered region.

For the first component, the right panel of Figure 7 labels each vertex by labels

from the regions shown in the upper-right panel of Figure 8. These indicate the bonuses

covered by that equilibrium; e.g., for any bonus in region B there is an equilibrium

near each of two vertices bearing label B. This component is not dual stable because the

shaded region is not covered; i.e., dual perturbations in this region have no equilibria

near the first component. One can verify this in Figure 9, which redraws the left panel

of Figure 7 after the game is perturbed by a bonus for d that is larger than the bonuses

for e and f : for this dual perturbation there is no completely-labeled pair of points for

which a is a best reply for player 2. As shown in Figure 8’s lower-right panel, the second

component is stable because all bonuses are covered by equilibria E and F.

Folds in the Equilibrium Graph

It is useful to visualize the graph of the equilibrium correspondence in the two upper
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panels describing the first component. Above each simplex of perturbations (primal or

dual) one can imagine the graph as the locus of equilibria corresponding to the perturba-

tions. This locus may have multiple components and folds but recall that it cannot have

holes. The dotted horizontal line in the right panel of Figure 7 is actually in the shadow

of a fold; for, as we have seen, the perturbations in the covered regions A, B, C, and D

of the upper-right panel of Figure 8 are each covered twice, once by equilibria below the

dotted line and again by different equilibria above the dotted line. For instance, starting

at vertex CD and circling around the boundary of the component traces out a cycle in the

component, arriving back again at CD, and along the way we cover twice each covered

perturbation without ever covering those in the shaded region. Similarly, in the upper-

left panel there are two folds whose shadows are the left and right boundaries of the

shaded region. For instance, the unshaded region on the left is covered by equilibrium

AB and again by equilibrium A, and the edge connecting AB and A covers precisely the

fold’s shadow along the left edge of the shaded region.

Another example is depicted in Figure 10. A component of the graph is shown above

the simplex of perturbations, which has an uncovered region. Each of two portions of

the graph is shown schematically as a planar surface, without indicating the equilibria it

comprises. The two planes cannot be connected by a tube because the graph cannot have

holes; instead, they are connected by the shaded vertical segment above the boundary

of the region of uncovered perturbations. Consequently, a full cycle — such as the one

shown by dashed lines and arrows in the graph — passes through equilibria whose

projections cover twice the perturbations below.

According to Kohlberg and Mertens (1986, Theorem 1) and Mertens (1989, 1991), this

situation is typical. A component is unstable if over a neighborhood of perturbations its

graph folds over so as to leave uncovered some residual region of perturbations. Each

generic perturbation is covered an even number of times, including some covered zero

times.8 A stable component can cover generic perturbations an even number of times

(Mertens (1986) constructs a three-player example) but at least one must produce odd

8 The nongeneric perturbations are those in the intersections of covered regions, such
as the line between regions A and B, which represent nearby nongeneric games. Typically,
a nongeneric perturbation is associated with a ‘vertical’ segment of the graph where there
is a continuum of equilibria.
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Figure 11: The Caterpillar Game and the regions of dual perturbations covered by

equilibria of the unique component in which 1 uses only a. The graph

folds twice over D, which is covered three times.

coverings.

It is important to realize, however, that folds occur frequently in components that are

stable, so the mere existence of a fold does not imply a component is unstable. Figure 11

shows an example of the ‘Caterpillar Game’ and the covered regions of dual perturbations

of 2’s strategies e, f , and h for the single component where 1 uses only a. Equilibria in a

cycle around the component cover the regions AD, B, CD, D, and again AD. Thus, there

is a fold from CD to D that reverses to cover AD, and thereby D is covered three times.

4. Construction of Simply-Stable Sets

We now describe an adaptation of the LH algorithm to compute a simply-stable set
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of vertices in a single component. Recall that such a set must be near an equilibrium

of each game obtained by perturbing some strategy. Each strategy has two possible

perturbations: the primal constrains the strategy’s probability to be slightly positive and

the dual awards a small bonus for choosing the strategy. If a set satisfies the weaker

criterion that invokes only primal or only dual perturbations then it is called primal or

dual simply stable. To describe the algorithm geometrically we use the dual version that

finds a dual simply-stable set. Again, we illustrate with the game ‘Do the Right Thing’

in Figures 6-8.

Because stability is a relevant consideration only for games that are nongeneric in

the normal form (even if they are generic in the extensive form), we implement the LH

algorithm in the form adapted to handle degeneracy, as described in x2. To construct

a dual simply-stable set, we guide the algorithm with perturbations from the simplex

of bonuses depicted in the upper-right panel of Figure 8. Although the choice is fairly

arbitrary, we use a generic perturbation close to some corner; as mentioned, this is made

precise in Part II by using perturbations derived from a lexicographic order. If the guide

is in the shaded region then the algorithm never enters the first component, since it

has no equilibrium covering a perturbation in this corner. Suppose, however, that the

initial guide is a perturbation in region B and that the LH algorithm arrives at the vertex

labeled AB in Figure 7 — which it does if the missing label is e or f . Our task is to

verify whether this component is dual simply stable, and if not to move on to another

component.

Suppose that our intention is to find vertices covering the corners in counterclockwise

order. We have covered the corner where only �e is positive and we want next to cover

the corner where only �f is positive. To do this we alter the guide to one near that corner

(i.e., in the region D) and resume the LH algorithm to arrive at the equilibrium labeled

CD by traversing the path labeled 1 in Figure 7. This path can be viewed alternatively

via its projection onto a path in the simplex of perturbations, connecting the first corner

to the second. Having completed this step successfully, we next adopt a guide near the

corner where only �d is positive (i.e., in the shaded region). Again resuming the LH

algorithm, the resulting path traverses the edge labeled 2 to the vertex C, then the edge

labeled 3 to the vertex BD, and then (!) it starts to leave the component by exiting along
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the edge labeled 4. This path can be seen fully in Figure 9, which shows the effect of the

bonus �d for 2’s strategy d on the best-reply regions in 1’s simplex of mixed strategies:

the path missing label f follows the sequence 2 ! 2� ! 3 ! 3� ! 4 of edges from the

vertex CD in the first component to the vertex E in the second. In this example, in fact,

the algorithm is allowed to exit from BD: it continues on to reach the second component’s

equilibrium E, and there a repetition of the procedure verifies that the second component

is dual simply stable.

In general, however, one does not always let the LH algorithm exit a component, and

we now describe why and the procedural rule that applies. In the above example, the LH

algorithm is allowed to exit because we have arrived at an equilibrium BD that covers

again the region B from which we started; indicating that region B and in particular

the corner perturbation used as the initial guide are covered twice. The equilibrium

correspondence folds over without covering the corner where only �d is positive; thus,

moving on to another component is a plausible tactic. Along the sequence of paths to

reach such a conclusion, however, we must contend with the fact that there may be many

folds, and some may be temporary ones that ultimately reverse. Thus, at intermediate

steps we follow the sequence of folds until eventually either we exit at another vertex

covering the initial corner (as in the example), or the folds reverse and we can proceed

forward again. In general, except at a vertex covering the initial guide, whenever the

LH algorithm would exit the component we revert back to the previous guide, which

the current folded piece of the graph covers. From there we may need to revert further,

eventually exiting if the initial guide recurs, or we may be able to continue forward

again.

This reversion process is sketched in Figure 12, which depicts schematically a typical

graph of the equilibrium correspondence near a single component along an edge of

perturbations connecting one guide to the next. The path of the LH algorithm along this

edge starts at the lower-left solid circle and proceeds in the direction of the arrows. It

reverses direction at folds along the way, and eventually it starts to exit the component

at the first open circle. At this point, one may be able to transit directly to another vertex

that reverses the fold (this possibility is shown by the open circle at the next higher level

in the figure). If not, then one continues backwards using the previous guide along the
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Equilibria

Segment of Perturbations

Potential Exit
at Boundary Point

Fold Reverses and
Path Continues

Previous Segment

Start

End

Figure 12: Where the graph folds over to cover again the first perturbation of a seg-

ment (so it would exit the component at that point), the algorithm backs

up along the sequence of prior segments of perturbations until either the

fold reverses — or the fold never reverses and then exit is permitted from

the initial perturbation at which the component was entered.

corresponding edge. This reversion backwards continues until either one arrives back at

the initial guide (indicating that exit is OK because the graph is folded over completely)

or eventually one reaches an edge on which the fold reverses (as indicated schematically

by the dashed segment).

Summary

To find a simply-stable set, the algorithm starts with an initial guide that is a generic

perturbation near one corner of the simplex of primal and dual perturbations. From

an almost completely-labeled pair of pure strategies it uses the LH algorithm to follow
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a path to a vertex of some component. Within each component it invokes the other

corners as guides around a circle of the corners and their connecting edges to generate

a corresponding circle around vertices and edges of the component, though reversing

each time a fold is encountered. Each edge from one corner to another generates a path

of the LH algorithm in the graph above that edge. It may find all corners covered and

therefore stop. Or via reversals enroute it may encounter a second vertex covering the

initial guide, signaling that the graph is folded, in which case it exits onto the adjacent

path that proceeds to another component, where the process repeats.

The entire route traces a unique one-dimensional locus that cannot branch or cycle:

after a finite number of steps it terminates with a simply-stable set of vertices in a single

component. This conclusion is derived in two parts. The first is based on (1) the previous

observation that each path between or within components cannot branch or cycle, and

(2) the further fact that at each vertex the rules allow precisely two incident paths: the

route enters on one and exits on the other.

Part II: Algebraic Specification of the Algorithm

The geometric sketch of the algorithm leaves aspects uncovered, so we present an

algebraic construction that is more precise. x5 specifies the formulation and reviews the

LH algorithm as amended for nongeneric games, which require lexicographic procedures

to cope with degeneracy. Details of the numerical procedures are relegated to the Ap-

pendix. x6 describes the algorithm for calculating a simply-stable set and proves that it

works.

5. Formulation

The game in normal form is described by two m1 by m2 matrices U 1 and U 2 with

elements u
p
ij . Player p has mp pure strategies, and if 1 and 2 choose strategies i and

j then p’s utility payoff is u
p
ij . A mixed strategy for player p is an assignment x̄p of

probabilities to his pure strategies, represented as a nonnegative mp-dimensional vector

of elements summing to one.

An equilibrium is a pair x̄ = (x̄1; x̄2 ) of mixed strategies for the players such that

a player assigns positive probability to a pure strategy only if it is an optimal response
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to the other’s mixed strategy. More precisely, hx̄; ȳ; v i solves a linear complementarity

problem:9

U 1 � x̄2 + ȳ1 = v11

U 20 � x̄1 + ȳ2 = v21

subject to x̄p � 0, 10 � x̄p = 1, ȳp � 0 and x̄p ? ȳp for p = 1; 2. Here, vp is player p’s

equilibrium expected payoff; therefore, the i-th slack variable ȳpi must be zero if p’s pure

strategy i is used with positive probability x̄
p
i > 0. This ‘complementarity’ condition for

optimality requires that x̄p and ȳp are orthogonal.

This problem is modified for computational purposes as follows. One can assume

without loss of generality that every payoff is strictly positive: if not, add a sufficiently

large constant to each matrix. Thus, each player p’s expected payoff vp is positive. This

enables consideration of a linear complementarity problem in standard form: one seeks

a solution hx; y i to the linear system10

U � x + I � y = 1 ; x � 0 ; y � 0 ;

satisfying the complementarity condition x ? y. Here, the two players’ strategies are

numbered consecutively as 1; . . . ; n, where n = m1 + m2, I is the n� n identity matrix,

and

U =

�
0 U 1

U 20 0

�
; x =

�
v�1

2 x̄1

v�1
1 x̄2

�
; y =

�
v�1

1 ȳ1

v�1
2 ȳ2

�
:

Except for the extraneous solution hx; y i = h0; 1i, each solution of this problem yields

an equilibrium by normalizing each player’s elements of x to sum to 1. We sometimes

refer to a solution as an equilibrium (possibly extraneous).

The set of feasible solutions to the linear system is a compact convex polyhedron

whose vertices are basic solutions. Each basis consists of n columns from the n � 2n

matrix A � [U; I ] such that the basis matrix B comprising these columns is nonsingular

9 We use 1 to indicate a vector of ones, 0 to indicate a vector or matrix of zeros, and
a prime to indicate ‘transpose’.

10 This form is used here for expositional purposes. For computations it is more efficient
to treat the players’ problems separately so that one works with two m1�m2 matrices. In
fact, it is sufficient to carry out basis changes via pivoting on the two m�m submatrices
representing the m rows and columns of the players’ used strategies. In large games, m
is typically small compared to m1 and m2.
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and the solution is feasible. At the basic solution the values of the nonbasic variables are

zero and the values of the basic variables are the corresponding elements of b � B�1 � 1,

which must be nonnegative. One moves among vertices by numerical operations of the

sort used in linear programming. Geometrically, each operation moves the solution along

the edge connecting two adjacent vertices. Computationally, each operation adjoins one

column to the basis matrix and deletes another selected to obtain the unique new basis

that preserves feasibility. The increase (from zero) in the previously nonbasic variable

that is made basic, or the decrease (to zero) in the previously basic variable that is made

nonbasic, parameterizes the edge traversed in moving from one vertex to an adjacent

one. As in linear programming, this operation can be executed efficiently on a tableau

of detached coefficients. The Appendix describes the rules for selecting the column that

leaves the basis, and for calculating the new tableau from the old.

If the basis includes one member of each complementary pair fxk; ykg, k = 1; . . . ; n,

then it is complementary and therefore yields a solution. The basis is called i-almost com-

plementary if it is complementary or if it includes both members of only one pair fxi; yig

and therefore excludes both members of another pair, say fxj; yj g. Analogously, we

say that the corresponding vertex is complementary or i-almost complementary (i-ac).

The Lemke-Howson Algorithm

Lemke and Howson (1964) show that if the problem is nondegenerate then, fixing some

strategy i, each complementary vertex is connected to another by a locus called an i-path

that consists of a sequence of adjacent i-ac vertices and their connecting edges.11 The

locus of an i-path is defined by relaxing the complementarity condition to allow xiyi � 0;

thus, i-ac vertices occur as intermediate points. Complementary vertices are connected

in pairs by i-paths, and no two pairs overlap, so their number is even. Excluding the

11 See also Lemke (1965) and Tomlin (1978). Nondegeneracy requires that basic vari-
ables always have positive values (b � 0), which is satisfied by generic normal-form
games but not by nontrivial generic extensive games. An extension to degenerate two-
player games is by Eaves (1971). For other cases the extensions assume nondegener-
acy: two-player games of incomplete information by Howson and Rosenthal (1974); N -
player polymatrix games by Eaves (1973) and Howson (1972); general N -player games,
by Rosenmüller (1971) and Wilson (1971); and Walrasian equilibria of piecewise-linear
economies, by Wilson (1978). The latter three require nonlinear (actually, multilinear)
calculations; for games with three or more players it is therefore often more efficient to
use approximation methods based on simplicial subdivisions.

24



extraneous vertex, these yield all the equilibria (an odd number) due to nondegeneracy.

To find an equilibrium, the algorithm can start from the extraneous vertex and follow

some i-path to find the complementary vertex that is its other terminus.

The procedural steps of the LH algorithm are as follows. Given any complementary

vertex as a starting point, the unique incident i-path is traversed by initially increasing

(i.e., making basic) the one of xi or yi that is initially nonbasic. One arrives thereby at an

initial i-ac vertex with some complementary pair fxj; yj g, j 6= i, having both members

nonbasic, one of which most recently became nonbasic and the other was previously

nonbasic: this is the current ‘nonbasic duplicated pair’. (For instance, starting from

the extraneous vertex, the initial i-ac vertex is the pair of i-ac pure strategies, as in

Figure 2 for the case that i = a and the nonbasic duplicated pair has j = b.) Thereafter

the steps are mandatory: each step moves from the current i-ac vertex to an adjacent

one by making basic the ‘other’ member of the nonbasic duplicated pair (i.e., the one

that does not reverse the path), until complementarity is restored when either xi or yi

becomes nonbasic — indicating that another complementary vertex has been reached.

Nondegeneracy assures at each step that a unique basic variable becomes nonbasic, so

the path always has a unique continuation until complementarity is restored. Eaves

(1971) extends these results to degenerate problems by using a lexicographic order to

resolve ties in the selection of the variable leaving the basis when another is introduced.

The Lexicographic Order

Our algorithm also handles degeneracy via a lexicographic order (lex-order) but in a

unified setup that allows consideration of the perturbations relevant to stability. Interpret

the array of coefficients in the initial tableau [�1; A], where A � [U; I ] and the basis

matrix is I, as representing the matrix equation

[�1; A ] + A � Z = 0 ; where Z �

�
X

Y

�
:

This is an equation for the two n � (1 + 2n) matrices X and Y , each row of which

provides the data for a lexicographic representation of the corresponding element of x

or y. At a basis B, the induced tableau [�b;A ] � B�1 � [�1; A] similarly represents

the corresponding matrix equation with these data. The vertex that is the basic solution
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is obtained by setting to zero the nonbasic rows of Z (those corresponding to nonbasic

columns), and then the basic rows are the negatives of their rows in the tableau.

Each particular lex-order is associated with a family of perturbations. For such a

perturbation represented as a (1 + 2n)-dimensional vector � = [��; �1; . . . ; �2n ], the matrix

equation collapses to a perturbation of the original vector equation:12

[�1; A ] � � + A � z = 0 ;

where z = Z � �, or after premultiplying through by B�1 to obtain the tableau,

[�b;A ] � � + A � z = 0 ; where z �

�
x

y

�
:

This form specifies directly the dependence on the perturbation �, whereas the matrix

equation leaves open the specification of the perturbation; in either case, the tableau is a

full summary.

To impose a specific lex-order, we select a permutation ` of the indices 1; . . . ; 2n of

primal and dual variables with the interpretation that the implied perturbation has

�� = �� � 1 ;

�`(j) = �j if 1 � j � 2n ;

where � is positive and small. Thus, the permutation ` indicates for `(j) � n that

strategy `(j) is forced into play with a probability of order �j ; and for `(j) > n that

strategy `(j)� n is awarded a bonus of order �j .

Each choice of the permutation ` defines an associated lex-order as follows. Let

M be the permutation matrix that permutes the columns of Z so that the (1 + `(j))-th

column goes in the (1 + j)-th position. Then Z is lex-positive if in ZM each row’s first

nonzero element is positive. This definition assures that if Z is lex-positive then z � Z�

is positive for all sufficiently small positive values of �.

This construction is applied directly to a tableau [�b; A] to determine if its associated

basic solution is lex-positive by using the criterion that in each row i the first nonzero

12 The origin of this representation is the observation that the perturbed problem has
the analogous form U � [x + �] + I � [y + �] = 1, where � = [�; �]. Although each primal
perturbation � induces a dual perturbation � = U � �, the converse is false and usually
there are many other dual perturbations.
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element in the sequence āi�; āi`(1); . . . ; āi`(2n) must be negative, where āi� � �bi. When

moving from one vertex to another one brings a designated nonbasic column into the

basis and makes nonbasic another that is selected to assure that the new vertex is lex-

positive. As described in the Appendix, this selection is unique.

For the portion of the algorithm that uses the LH algorithm to follow an i-path we

use the lex-order based on the cyclic permutation `i for which

`i(j) =

�
i + j if i + j � 2n ;

i + j � 2n if i + j > 2n :

That is, `i = [i+1; . . . ; 2n; 1; . . . ; i] is the i-th forward rotation of the identity permutation

`� � [1; . . . ; 2n], and `2n � `�. Thus, vertices on an i-path are i-almost complementary,

and feasible (lex-positive) with respect to perturbations that perturb zi the least and zi+1

the most. Note that zi is xi if i � n and yi�n otherwise, and similarly for zi+1.

A complementary vertex that is lex-positive using the i-th cyclic permutation is called

an i-vertex and denoted (B; `i) if its basis matrix is B. When discussing an i-vertex we

simplify by referring to its associated variable as zi (rather than, say, xi); but we refer

directly to a complementary pair fxj; yj g rather than complicated references to, say, zj

and its complement.

The previously described properties of the LH algorithm are preserved: the effect of

a lex-order is implicitly to perturb the problem to make it nondegenerate. In particular,

each endpoint of an i-path is an i-vertex covering the corner where only zi+1 is perturbed.

Observe that a set including an i-vertex for each i = 1; . . . ; 2n is simply stable, because

each corner is covered. Our algorithm is based on the tactic of switching from an i-

vertex onto an (i + 1)-path to move to an (i + 1)-vertex. If this is completed successfully

for i = 1; . . . ; 2n then the algorithm has computed a simply-stable set.

6. The Algorithm

We now specify the algorithm and derive its properties.

To recapitulate, each vertex is characterized by a pair (B; `) in which B is a basis

matrix yielding a basic solution that is `-feasible according to the lex-order derived from

the cyclic permutation ` of the corners. `-feasibility requires that if each �`(j) = �j and
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� is positive and sufficiently small, then the basic variables are positive. Feasibility

with respect to the i-th cyclic permutation `i is called i-feasibility. A complementary

vertex is one for which the basis is complementary: the basis includes one column from

each complementary pair. Each complementary vertex is an equilibrium that is a vertex

of some component. An i-vertex is an i-feasible complementary vertex, and it is an

equilibrium that covers the perturbation constructed from `i. An i-ac vertex is a basic

solution that is i-feasible and for which the basis has two columns from the i-th pair

(the basic duplicated pair) and one column from all but one other pair (the nonbasic

duplicated pair).13

As in the LH algorithm, an i-path is a connected locus of i-feasible complementary

and i-almost complementary vertices consisting of its two complementary endpoints

(i-vertices), intermediate i-almost complementary points (i-ac vertices), and the edges

connecting them. These edges are traversed by changing the basis according to a rule,

called the RP rule in the Appendix, that preserves i-feasibility.

The Appendix also describes an alternative NP rule used when transiting from a

‘maximal’ i-vertex to a ‘boundary’ (i+1)-ac vertex, or the reverse. An i-vertex is maximal

if its basis is not (i + 1)-feasible, and minimal if its basis is not (i � 1)-feasible. An i-ac

vertex is said to be an equilibrium i-ac vertex if the basic value of the variable zi is zero

(bi = 0) — where zi is xi or yi depending on which one’s index is `i(2n). A boundary

i-ac vertex is an equilibrium i-ac vertex for which the basic value of zi would increase if

the column of one of the nonbasic duplicated variables were made basic. This nonbasic

duplicated variable is said below to be the one that ‘interacts’ with zi.14 The NP rule

in the Appendix selects for deletion the unique basic column for which the new basic

13 Unlike an i-vertex, an i-ac vertex’s covered region need not include any corner:
examples are the equilibria in Figure 7 labeled A and C, which cover the corresponding
regions in the upper-right panel of Figure 8. To identify these covered regions it is easiest
first to make the basis complementary by replacing one of the basic duplicated pair with
one of the nonbasic duplicated pair. For a complementary basis, the inequalities defining
the covered region are given by the tableau’s rows for basic variables with zero values.

14 If the nonbasic duplicated pair is fxj; yj g then the member that interacts with xi
is xj if i and j are strategies of the same player and yj otherwise; and similarly the
member that interacts with yi is yj in this event and xj otherwise. A boundary i-ac
vertex has the property that the column of the member of the nonbasic duplicated pair
that interacts with zi has a nonpositive element in each row with basic value zero, and
a negative element in the row of zi. The Appendix provides details.
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solution will be lex-positive according to the new lex-order.

Adjacency Relations

For the algorithm we define a symmetric binary relation of adjacency among vertices.

As a preliminary, define a symmetric relation of ‘potential adjacency’ as follows:

� An i-vertex (B; `i) is potentially adjacent to those among the (i� 1)-vertex (B; `i�1),

the (i + 1)-vertex (B; `i+1), the i-ac vertex (B0; `i), and the (i + 1)-ac vertex (B00; `i+1)
that are feasible, where:

� B 0 is obtained from B by making basic the nonbasic member of the i-th com-
plementary pair, using the RP rule.

� If the i-vertex is maximal, then B00 is obtained from B by making zi+1 basic,
using the NP rule.

� An i-ac vertex (B; `i) is potentially adjacent to those among the i-ac vertex (or i-
vertex) (B�; `i) and (B��; `i), and the (i�1)-vertex (By; `i�1) that are feasible, where:

� B� and B�� are each obtained from B by making basic one of the nonbasic
duplicated pair, using the RP rule.

� If the i-ac vertex is at a boundary, then By is obtained from B by making basic
the member of the nonbasic duplicated pair that interacts with zi, using the NP

rule.

Two properties of the potential adjacency relation are established in the following lemmas

proved in the Appendix.

Lemma 1: An i-vertex is potentially adjacent to an equilibrium i-ac vertex if and only if

it is minimal.

Lemma 2: An i-vertex is potentially adjacent to a boundary (i + 1)-ac vertex if and only if

it is maximal.

The implications of these lemmas are depicted schematically in the left panel of Figure 13.

In the figure, an open square indicates an i-vertex, which is shaded if it is maximal; a

circle indicates an equilibrium i-ac vertex, which is filled if it is at a boundary; a solid

line indicates an edge generated by a basis change, in bold if the NP rule applies; and a

dashed line indicates rotation of the lex-order. As shown in the top portion, the i-vertex

in the center has four potential adjacencies. However, Lemma 2 indicates that only one

of the bottom [an (i + 1)-vertex] and right [a boundary (i + 1)-ac vertex] adjacencies is
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Figure 13: In the left panel, each i-vertex is potentially adjacent to four other vertices:

precisely one of the left and top adjacencies is feasible, and one of the

bottom and right. Similarly, an i-ac vertex has three potential adjacencies

and only two are feasible. The implications of Lemmas 1 and 2 are

illustrated in the right panel which displays a route connecting two 2n-

vertices in different components.

feasible, and Lemma 1 indicates that only one of the left [an equilibrium i-ac vertex] and

top [an (i � 1)-vertex] adjacencies is feasible. Similarly, in the bottom portion the i-ac

vertex in the center has three potential adjacencies, but of the two connected to the left

and right with another i-ac vertex or i-vertex, one is excluded if the one in the center is

a boundary i-ac vertex and in this case it is adjacent to a maximal (i� 1)-vertex.

To specify the algorithm we select a particular strategy, hereafter strategy 1, and

then relative to this selection we define a relation of 1-adjacency, or just ‘adjacency’ for
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brevity, that is the same as potential adjacency except for the restrictions that:15

� Exclude all adjacency relations involving an i-ac vertex for which i > 1 and the
basic value of zi is positive (bi > 0).

� Exclude all adjacency relations between a 2n-vertex and a 1-vertex or 1-ac vertex.

In keeping with these restrictions, we hereafter specify that a 1-vertex is minimal and an

2n-vertex is maximal. This is consistent with Lemmas 1 and 2 in the following sense. For

i > 1 the first restriction confines adjacency to an equilibrium i-ac vertex, which Lemma

1 says can be adjacent to a minimal i-vertex. In parallel, we allow that any 1-ac vertex

can be adjacent to a 1-vertex, which is minimal by definition. Similarly, minimality of

a 1-vertex and maximality of a 2n-vertex is consistent with the exclusion in the second

restriction of adjacencies between a 1-vertex and a 2n-vertex. The second restriction

also excludes adjacency between a 2n-vertex and a (boundary) 1-ac vertex. As will be

seen, this case never arises in the algorithm because we enforce the rule that a 2n-vertex

is a terminus of the algorithm; and in the reverse direction, allowing 1-paths to cross

boundaries is the key property that enables the algorithm to move from one component

to another in its search for one that is simply stable. In contrast, the first restriction

assures that if i 6= 1 then a boundary i-ac vertex is not adjacent to the one of the two

potentially adjacent i-ac vertices that makes basic the interacting member of the nonbasic

duplicated pair, since that would make bi positive; hence, this adjacency is replaced by

adjacency to a maximal (i� 1)-vertex within the same component. Thus, all adjacencies

are within the same component except along 1-paths: it is only along a 1-path that a

chain of adjacencies can enter or leave a component.

The key properties of the adjacency relation are summarized by

Theorem 1: A 2n-vertex is adjacent to a unique (2n� 1)-vertex if it is not minimal or to

a unique equilibrium 2n-ac vertex if it is minimal. If i 6= 2n then an i-vertex or i-ac vertex

is adjacent to zero or two other vertices.

Proof: The second restriction on the adjacency relation assures that for a 2n-vertex the

two listed adjacencies are the only possible ones. The first restriction requires that at an

15 Adjacency obviously depends on both the selected corner (here, only i = 1 allows
entry and exit from a component) and the numbering of the strategies via the specification
of the cyclic permutations `i. By varying these specifications, the algorithm can find
different simply-stable sets.
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adjacent 2n-ac vertex z2n has the basic value b2n = 0 and is therefore an equilibrium;

then, Lemma 1 assures that this adjacency occurs if and only if the 2n-vertex is minimal

and therefore is not adjacent to the (2n�1)-vertex with the same basis. For the case i = 1,

a 1-vertex is adjacent to the 1-ac vertex obtained by making basic the nonbasic member

of the 1-th complementary pair. The second restriction assures that adjacency to the

2n-vertex with the same basis is precluded, and of the other two possibilities precisely

one is true according to Lemma 2: if the 1-vertex is not maximal then it is adjacent to

the 2-vertex with the same basis, and otherwise it is adjacent to the boundary 2-ac vertex

obtained by making z2 basic. If i 6= 1; 2n then Lemma 1 asserts that between the two

potential adjacencies with an equilibrium i-ac vertex and the (i�1)-vertex with the same

basis, precisely one is true (i.e., the former if the i-vertex is minimal). Similarly, Lemma

2 asserts that between the two potential adjacencies with a boundary (i+1)-ac vertex and

the (i + 1)-vertex with the same basis precisely one is true (i.e., the former if the i-vertex

is maximal). Turning to the case of an i-ac vertex, there are no adjacencies unless i = 1

or the basic value of zi is zero and it is an equilibrium. If i = 1, or bi = 0 but it is not

at a boundary, then it is adjacent to precisely the two i-ac vertices (or one could be an

i-vertex) obtained by making basic one of the nonbasic duplicated pair. If i 6= 1 and it is

at a boundary then one of these is replaced by adjacency to the maximal (i � 1)-vertex

obtained by making basic the nonbasic duplicated variable that interacts with zi, using

the NP rule. Q.E.D.

The Algorithm

In view of Theorem 1, the algorithm for simply-stable sets consists of starting at one 2n-

vertex and thereafter following the unique chain of adjacent vertices to arrive at another

2n-vertex. The locus comprising a chain’s vertices and connecting edges is called a route.

We show that a route’s terminal 2n-vertex lies in a component that is simply stable if

it was entered on a 1-path, and indeed in this case the route’s members of this component

provide a simply-stable set (not necessarily minimal). In particular, starting from the

extraneous vertex’s 2n-vertex (I; `2n), which is uniquely maximal in this component,

the route necessarily exits the component from the 1-vertex (I; `1), which is uniquely

minimal in this component, on a 1-path and terminates in a different component that is

simply stable. The members of the route in the last component yield a simply-stable set
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of equilibria because it enters on a 1-path and terminates at an 2n-vertex, and includes

an i-vertex for each i = 1; . . . ; 2n.

The statement of the properties of the algorithm is

Theorem 2: Each 2n-vertex is connected via a unique route of adjacent vertices and their

connecting edges to another 2n-vertex. If the route leaves one component then it enters

another on a 1-path. The last component entered is simply stable and the route’s vertices in

this component form a simply-stable set.

Proof: If i 6= 1 then a maximal subchain of adjacent equilibrium i-ac vertices lies within

a single component and has two endpoints each of which is either a minimal i-vertex

or a boundary i-ac vertex. An endpoint that is a minimal i-vertex is, if i 6= 2n, adjacent

within the same component to either (if it is not maximal) an (i+ 1)-vertex with the same

basis or (if it is maximal) a boundary (i + 1)-ac vertex in this component; and if i = 2n

then it has no other adjacent vertex and is a terminus of the route. An endpoint that is

a boundary i-ac vertex is adjacent to a maximal (i� 1)-vertex. Letting i vary, a maximal

subchain of adjacent i-vertices has a minimal and a maximal vertex as its two endpoints

(or one if they are the same), say an i�-vertex and an i�-vertex, the former adjacent to

an i�-ac vertex (in the same component if i 6= 1) and the latter (if i� 6= 2n) to a boundary

(i� + 1)-ac vertex in the same component. Thus, starting from one 2n-vertex there is a

unique adjacent vertex and thereafter each vertex encountered has two adjacent vertices,

one of which has just been visited and the other of which continues the route until it

is terminated when another 2n-vertex is reached. Such a terminus must be reached

because the route cannot cycle (a cycle would require some vertex to be adjacent to three

others) and because the number of combinations of bases and cyclic permutations is

finite. By construction, components are left and entered only on 1-paths. Thus, if the

last component is entered on a 1-path then from there to the terminus the route includes

an i-vertex for each i = 1; . . . ; 2n (possibly with repetitions) because adjacencies on each

i-path are confined to the same lex-order, and between paths, each adjacency rotates the

lex-order one step. Q.E.D.

An example of a route connecting one 2n-vertex to another is shown schematically

in the right panel of Figure 13. Starting from the lower left at the 2n-vertex in the

component of the extraneous vertex, the route moves to the 1-vertex and then exits
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the component on a 1-path, passing through one or more 1-ac vertices to reach a new

component at the second 1-vertex, which is minimal by definition. From there, forward

rotation of the lex-order moves to a maximal j-vertex from which a basis change using

the NP rule transits to a boundary (j + 1)-ac vertex and continues on the incident (j + 1)-

path through an equilibrium (j + 1)-ac vertex to another boundary (j + 1)-ac vertex,

from which a reverse application of the NP rule moves to another maximal j-vertex.

Backwards rotation of the lex-order then arrives at a minimal i-vertex with 2 < i � j,

from which basis changes according to the RP rule move first to an equilibrium i-ac

vertex and then a boundary i-ac vertex from which a reverse NP basis change arrives

at an (i � 1)-vertex that is both maximal and minimal, so continuation is on an (i � 1)-

path. This arrives at another minimal (i � 1)-vertex that allows forward rotation to a

maximal (j + 1)-vertex. Another NP basis change transits to a boundary (j + 2)-ac vertex,

from which continuation eventually arrives at the other terminal 2n-vertex. The second

component is simply stable and the collection of vertices in this component constitute

a simply-stable subset. To obtain a minimal simply-stable set one can delete redundant

vertices so as still to cover all corners; e.g., delete the component’s second (non-maximal)

minimal vertex, leaving three forming a minimal simply-stable set.

The statement of Theorem 2 suggests that a route is oriented, with a direction from a

starting point to a terminus. In fact, routes are uniquely reversible: if the algorithm starts

at the terminus then it proceeds along the reversed path to the starting point. Along the

reversed route, rotations reverse direction; RP basis changes switch the roles of row and

column variables; and, NP basis changes from a boundary vertex and from a maximal

vertex switch roles. This is mostly evident in Figure 13 by tracing the route backwards.

The algorithm can be modified to obtain stronger results. For instance, after reaching

a 2n-vertex one can (for the remainder of the current component) drop the restriction on

potential adjacency that excludes adjacency between a 2n-vertex and the initial 1-vertex,

and then proceed onward. In an example like Figure 10 this tactic continues the route

beyond the 2n-vertex indicated by the shaded square and continues onto the upper plane

where it reverses direction and ultimately finds a second equilibrium indicated by the

open circle that covers the initial perturbation, from which it exits to another component.

Or, one can continue further to return to the initial equilibrium indicated by the shaded
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circle, where the discovery that the initial perturbation is covered an even number of

times (twice in this example) prompts an exit from the second one.

In general, the algorithm ensures only simple stability, but unfortunately I have not

found examples where the algorithm terminates in an unstable component; such exam-

ples might be rare in practice but presumably they are not nongeneric. The difficulty

is that if the path of perturbations intersects merely the closure of an uncovered region

then the route exits from a component even if it is simply stable. This typically happens

because the route’s projection onto the perturbations intersects an uncovered region ad-

jacent to a corner, such as the shaded region in the upper-left panel of Figure 8 where the

dotted line shows how the path of primal perturbations intersects the uncovered region.

A more elaborate example shows how this occurs even when the component is dual

simply stable: Figure 14 shows a modified version of ‘Do the Right Thing’ and Figure 15

shows the uncovered region of dual perturbations on the face with zero perturbations

of e and h (other faces are covered: the uncovered region is therefore the set of convex

combinations of the barycenter and points in the shaded region shown). Dual simple

stability is obtained only because region A-B-I is covered (accidentally, so to speak) by

equilibria using the unperturbed strategies e and h: deleting these strategies yields a

game like Figures 6-8 in which the first component is not dual simply stable.

Pictures such as Figure 15 hide the difficulty in higher dimensions of identifying un-

stable components. A partial but easy test takes advantage of the fact that a component

is stable if any (and therefore all) generic perturbation has an odd number of equilib-

ria near the component; cf. Mertens (1986, 1989). One therefore counts the number of

coverings of each corner by the vertices generated by the algorithm. In Figure 15 for

instance, the computer program noted (by checking signs of coefficients in the tableau)

that regions E and F are covered twice and A (and C and H) four times, which sug-

gests that an uncovered perturbation can be found. This test is imperfect because in an

unstable component like Figure 10 the plain algorithm could generate an odd covering;

moreover, the modified algorithm (mentioned above) could find an even covering when

in fact the component is stable with an odd covering, as when there is a third plane

that covers the perturbations not covered by the first two. In general, an even or odd

covering generated by an algorithm is insufficient evidence without assurance that all
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equilibria covering some generic perturbation have been found. It appears, therefore,

that the only sufficient procedures entail essentially complete enumeration as in Mertens

(1989, 1991).

Stanford Business School, Stanford, CA 94305-5015, U.S.A.
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APPENDIX

The Pivoting Operations

This Appendix describes the numerical operations used in the algorithm and proves

the two lemmas.

Gaussian Elimination or ‘Pivoting’

Gaussian elimination, or ‘pivoting’ as it is called in linear programming, is a numerical

procedure for recalculating the coefficients in the tableau A � B�1 � A when the basis

matrix B changes by adding one column (called the pivot column) and deleting another

(called the pivot row, because in the tableau it is associated with a row). The rule for

calculating the new coefficients from the old when the indices of the pivot row and

column are r and s is:

āij  

(
āij=� if i = r ;

āij � āisārj=� if i 6= r ;

where � � ārs is called the pivot.

Regular Pivoting

When moving from one i-vertex or i-ac vertex to another, the regular pivoting or RP

rule is used to select the column to be deleted from the basis. In this case the pivot is

positive.

Let [�b; A] be the tableau for an `-feasible basis. Introducing a nonbasic column

into the basis while preserving `-feasibility requires a unique basic column to leave;

cf. Eaves (1971). The selection rule is specified as follows. Suppose s is the column of

the previously nonbasic column entering the basis and let S � fr j ārs > 0g, which

must be nonempty or the set of solutions would be unbounded.

The RP Rule: Define S� = arg minfbr=ārs j r 2 Sg, and then recursively for
m = 1; . . . ; 2n:

Sm = arg maxf ār;`(m)=ārs j r 2 Sm�1g ;
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until for some m � 0 sufficiently large, Sm is a singleton set. Its unique member
r(s) is the index of the pivot row whose column must leave the basis.

This rule is merely an algorithmic statement of the requirement that afterwards the lex-

first nonzero element in each row of the new tableau must be negative. This operation

is uniquely reversible. One applies the same rules at the new basis to the case that the

newly nonbasic column is to be made basic again.

Lemma 1: An i-vertex is potentially adjacent to an equilibrium i-ac vertex if and only if

it is minimal.

Proof: We show first that an i-vertex that is adjacent to an equilibrium i-ac vertex must

be minimal. At an i-vertex there are two possibilities. If the i-th variable zi is nonbasic

then it became so via a basis change using the RP rule from the adjacent i-ac vertex

where it was basic and zero, and therefore its column has a positive element in the row

of a basic zero variable. If zi is basic (and basic-zero at the adjacent i-ac vertex), then it

is presently basic-zero, and again its coefficient of 1 in its own row is a positive element

in the row of a basic-zero variable. In either case, backward rotation of `i renders the

basis infeasible because zi becomes first in the lex-order `i�1. Conversely, if the i-vertex

is minimal then zi is either basic-zero or nonbasic with a positive coefficient in a basic-

zero row. In either case, making basic the nonbasic member of the i-th complementary

pair yields an i-ac vertex with zi’s value being zero. Thus the adjacent i-ac vertex is an

equilibrium. Q.E.D.

Negative Pivoting

When moving from an i-ac vertex to an (i�1)-vertex or the reverse, one uses the negative

pivoting or NP rule to select the column to be deleted from the basis. In this case the

pivot is negative. This case happens only for a boundary i-ac vertex and a maximal

(i� 1)-vertex with i > 1. That is, i 6= 1 and:

(1) The basic value of zi is zero at the i-ac vertex, so the i-ac vertex is an equilibrium.

(2) The member of the nonbasic duplicated pair that interacts with zi has a nonpositive
element in each row with basic value zero, and a negative element in the row of zi,
so the i-ac vertex is at a boundary.

(3) The (i� 1)-vertex basis is not i-feasible, so it is maximal.
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We deal with the simplest case first. Given a boundary i-ac vertex (B; `i), one obtains

an (i � 1)-vertex (B00; `i�1) by first rotating backwards the lex-order (thus replacing `i

by `i�1) and then altering the basis by deleting the column of the basic variable zi and

adding the column of the nonbasic duplicated pair’s member zj that interacts with zi.

Claim 1: The basis B00 is complementary and (i� 1)-feasible, but not i-feasible; that is, it

is a maximal (i� 1)-vertex.

Proof: Because the pivot row’s variable zi has basic value zero, pivoting does not

change any basic values. The set of basic variables with zero basic values (the ‘basic-zero’

rows) therefore remains unchanged except that zi is replaced by the interacting member

zj of the nonbasic duplicated pair. At basis B, zj ’s column of A has nonpositive elements

in the basic-zero rows and the pivot is negative so the signs of these elements become

the signs of the elements in the column of zi in the basic-zero rows, and this column is

now lex-first. The negative elements where they appeared now assure lex-positivity of

the basic variable for that row; and where there are zero elements the corresponding row

is unchanged, so the first nonzero element in each such row remains negative. Thus, B00

is (i � 1)-feasible. It is not i-feasible, however, because the lex-second nonzero element

of zj ’s row is now positive, since it was previously negative. Q.E.D.

Reversing this operation is cumbersome because it parallels the RP rule in its need

to identify the basic column to be deleted. Suppose that the motion is from a maximal

i-vertex (B; `i) to an (i + 1)-ac vertex (B00; `i+1), with i < 2n. Suppose s is the column of

the nonbasic column entering the basis; as shown in Claim 2 this will be the column of

zi+1 and it will have a negative element assuring that S � fr j ārs < 0g is nonempty.

The NP Rule: Define S� = arg maxfbr=ārs j r 2 Sg, and then recursively for

m = 1; . . . ; 2n:
Sm = arg minf ār;`(m)=ārs j r 2 Sm�1g ;

until for some m � 0 sufficiently large, Sm is a singleton set and its unique member

r(s) is the index of the pivot row whose column must leave the basis.

Again, this rule is merely an algorithmic statement of the requirement that afterwards

the lex-first nonzero element in each row of the tableau must be negative. If this rule

were used to select the deleted column when one is at a boundary i-ac vertex then (after

backward rotation to obtain the cyclic permutation `i�1) it selects the column of the basic
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variable zi, as described previously. That is, zi’s basic value is zero, its column has a 1

in its row and zeros elsewhere, and the pivot column has a negative element in its row,

so the index of zi’s row is in S� and it is the only member of S1.

Claim 2: (B00; `i+1) is a boundary (i + 1)-ac vertex.

Proof: We first show that B00 is (i+1)-feasible. At (B; `i), zi+1 is first in the lex-order and

therefore it cannot be basic and zero. Nor can it be basic with a positive value, because

if it were then B would be (i + 1)-feasible; hence zi+1 is nonbasic and its column has

nonpositive elements in basic rows having zero values. Similarly, some variable must be

basic and zero and zi+1 must have a negative element in some basic row with zero values,

since otherwise B would be (i + 1)-feasible. Using the basis B and pivoting to introduce

zi+1 into the basis, therefore, the NP rule must select a column from among those that

are basic with zero values; consequently, the basic values remain unchanged after the

basis change. Further, the row of the deleted variable must have its lex-second nonzero

element positive. That is, if the selected row’s lex-second element were negative then B

would be (i + 1)-feasible: if any other basic-zero row having a nonzero (hence negative)

element in zi+1’s column had its lex-second element positive then the NP rule would

select it. Consequently, after the basis change this element will be negative (because the

pivot is negative) and after rotating `i forward one step this element will be the lex-first

nonzero element in the row of zi+1. Among other basic-zero rows, any row for which the

column of zi+1 has a zero element remains unchanged; in such rows, therefore, the lex-first

nonzero element remains unchanged (hence negative) at (B00; `i+1). As for the remaining

basic-zero rows, the NP rule assures that after the basis change the lex-second nonzero

element will be negative and after rotation it will be first in the lex-order: this is because

the sets S� and S1 are identical and therefore the selection of the pivot row essentially

begins with S2. Thus, (B00; `i+1) is (i+ 1)-feasible and it is an (i+ 1)-ac vertex because the

only basic duplicated pair is zi+1 and its complement. It is an equilibrium because the

basic value of zi+1 is zero. Finally, it is at a boundary because the newly nonbasic variable

is one of the nonbasic duplicated pair, and its column (which is a positive multiple of

zi+1’s column at the basis B) has a negative element in the row of zi+1 and nonpositive

elements in all other basic-zero rows, as did zi+1’s column previously. Q.E.D.

Lemma 2: An i-vertex is potentially adjacent to a boundary (i + 1)-ac vertex if and only if
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it is maximal.

Proof: This follows from Claims 1 and 2. Q.E.D.
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Footnotes

1. NSF grants SES 8908269 and 9207850 provided financial support and Faruk Gul

provided intellectual support. An STSC APL II version of the computer program is

available from the author, and a faster C version has been prepared for the game

solver Gambit by McKelvey (1990).

2. As in Kohlberg and Mertens, perturbing a strategy’s minimal probability perturbs

other players’ payoffs from all their strategies, whereas perturbing its payoff gives its

player a bonus for using that strategy. Thus, like stability, simple stability weakens

hyperstability, which considers all payoff perturbations, by considering a restricted

set of perturbations. If a game has only pure strategies (e.g., all mixed strategies are

represented explicitly as pure strategies) then simple stability implies stability.

3. Van Damme (1989) provides a critique of the ‘forward induction’ property of stable

sets. Economic applications are studied by Bagwell and Ramey (1990), Banks and

Sobel (1987), Cho and Kreps (1987), Cho and Sobel (1990), Glazer and Weiss (1990),

Osborne (1990), and Ponssard (1991) — among many others. Stability is used also to

refine Walrasian equilibria of economic models with features such as signaling and

screening; cf. Gale (1992).

4. For the two-player games addressed here, all computations are linear, which allows

bypassing some aspects of Mertens’ definition; also, for simplicity we apply the

definition to stable components, not smaller connected sets. With these provisos,

Mertens’ definition says essentially that a component is stable if the projection from

a neighborhood of the component to a neighborhood of the game is homologically

nontrivial. Mertens (1986) shows that this definition implies the necessity of the

condition stated in the text; i.e., the projection is onto, so no region is left uncovered.

This setup allows a large family of definitions depending on the homology theory

used and the normalizations allowed, but he shows that these definitions are es-

sentially equivalent. Mertens (1987) shows that applying a minimality requirement
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would violate the desirable property that the solution depends only on the ordinal

properties of players’ preferences.

5. The algorithm is designed purposely not to examine all vertices, since their number

can be enormous. The situation is like the difference between the lengths of a circular

orbit around the earth, and a flight over every city.

6. The terms ‘generic normal-form’ in game-theoretic lingo and ‘nondegenerate’ in

linear-programming lingo are essentially equivalent.

7. Their theorem states that the projection from the graph of the equilibrium corre-

spondence to the space of games is homotopic to a homeomorphism. This means

that the graph can be stretched to eliminate folds without leaving holes. They use

essentially the space of bonuses to model the space of games, so the graph in Figure

3 illustrates their result along a slice in which only the bonus for strategy a varies.

They actually model these spaces as spheres by adding a point at infinity: in Part II

we proceed similarly by including an ‘extraneous vertex’.

8. The nongeneric perturbations are those in the intersections of covered regions, such

as the line between regions A and B, which represent nearby nongeneric games.

Typically, a nongeneric perturbation is associated with a ‘vertical’ segment of the

graph where there is a continuum of equilibria.

9. We use 1 to indicate a vector of ones, 0 to indicate a vector or matrix of zeros, and

a prime to indicate ‘transpose’.

10. This form is used here for expositional purposes. For computations it is more efficient

to treat the players’ problems separately so that one works with two m1 � m2

matrices. In fact, it is sufficient to carry out basis changes via pivoting on the two

m � m submatrices representing the m rows and columns of the players’ used

strategies. In large games, m is typically small compared to m1 and m2.

11. See also Lemke (1965) and Tomlin (1978). Nondegeneracy requires that basic vari-

ables always have positive values (b� 0), which is satisfied by generic normal-form

games but not by nontrivial generic extensive games. An extension to degenerate
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two-player games is by Eaves (1971). For other cases the extensions assume nonde-

generacy: two-player games of incomplete information by Howson and Rosenthal

(1974); N -player polymatrix games by Eaves (1973) and Howson (1972); general N -

player games, by Rosenmüller (1971) and Wilson (1971); and Walrasian equilibria of

piecewise-linear economies, by Wilson (1978). The latter three require nonlinear (ac-

tually, multilinear) calculations; for games with three or more players it is therefore

often more efficient to use approximation methods based on simplicial subdivisions.

12. The origin of this representation is the observation that the perturbed problem has

the analogous form U � [x + �] + I � [y + �] = 1, where � = [�; �]. Although each

primal perturbation � induces a dual perturbation � = U � �, the converse is false

and usually there are many other dual perturbations.

13. Unlike an i-vertex, an i-ac vertex’s covered region need not include any corner: ex-

amples are the equilibria in Figure 7 labeled A and C, which cover the corresponding

regions in the upper-right panel of Figure 8. To identify these covered regions it is

easiest first to make the basis complementary by replacing one of the basic dupli-

cated pair with one of the nonbasic duplicated pair. For a complementary basis, the

inequalities defining the covered region are given by the tableau’s rows for basic

variables with zero values.

14. If the nonbasic duplicated pair is fxj; yj g then the member that interacts with xi is

xj if i and j are strategies of the same player and yj otherwise; and similarly the

member that interacts with yi is yj in this event and xj otherwise. A boundary i-ac

vertex has the property that the column of the member of the nonbasic duplicated

pair that interacts with zi has a nonpositive element in each row with basic value

zero, and a negative element in the row of zi. The Appendix provides details.

15. Adjacency obviously depends on both the selected corner (here, only i = 1 allows

entry and exit from a component) and the numbering of the strategies via the speci-

fication of the cyclic permutations `i. By varying these specifications, the algorithm

can find different simply-stable sets.
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Figure Legends

Legends for Figures

Figure 1: Geometric representation of a player’s mixed strategies as a simplex with each face

labeled by the strategy unused there.

Figure 2: Mixed strategies and best replies for an example. The numbered edges record the

path of the Lemke-Howson algorithm.

Figure 3: The path of the Lemke-Howson algorithm as a homotopy parameterized by the

bonus for strategy a.

Figure 4: A primal perturbation of player 1’s mixed strategies and a dual perturbation of 2’s

best replies.

Figure 5: The left panel shows a vertex of one player’s mixed strategies where an equilibrium

indicated by the circle allows a primal perturbation in which strategy b is perturbed

more than c. The right panel shows the new configuration obtained from the revised

perturbation in which c is perturbed more than b. This initiates a path missing label

b in which the next step is to use e.

Figure 6: The extensive game ‘Do The Right Thing’.

Figure 7: Mixed strategies and best replies for ‘Do The Right Thing’. Vertices of equilibrium

components are labeled by the regions of dual perturbations they cover in Figure 8.

The numbered edges record part of a route of the algorithm.

Figure 8: Primal and dual perturbations covered by the two equilibrium components.

Figure 9: A dual perturbation of strategy d that is not covered by the first component. The

numbered edges record a path from the first component to the second.

Figure 10: Schematic representation of how an uncovered region of perturbations induces

an even number of coverings of the covered perturbations. A simply-stable set is

obtained on the route from the initial vertex indicated by the black circle to the third

indicated by the square. Further continuation encounters the uncovered region and

returns to a second equilibrium (open circle) covering the initial perturbation and

then to the initial vertex.
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Figure Legends

Figure 11: The Caterpillar Game and the regions of dual perturbations covered by equilibria

of the unique component in which 1 uses only a. The graph folds twice over D,

which is covered three times.

Figure 12: Where the graph folds over to cover again the first perturbation of a segment

(so it would exit the component at that point), the algorithm backs up along the

sequence of prior segments of perturbations until either the fold reverses — or the

fold never reverses and then exit is permitted from the initial perturbation at which

the component was entered.

Figure 13: In the left panel, each i-vertex is potentially adjacent to four other vertices: precisely

one of the left and top adjacencies is feasible, and one of the bottom and right.

Similarly, an i-ac vertex has three potential adjacencies and only two are feasible.

The implications of Lemmas 1 and 2 are illustrated in the right panel, which displays

schematically a route connecting two 2n-vertices in different components.

Figure 14: A modification of the game ‘Do The Right Thing’.

Figure 15: Mixed strategies and best replies for the modified DRT game, and for the first

component, the regions of primal and dual perturbations covered.
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